浅析Simpson算法

Simpson算法

用于求解定积分一类问题。
思路是用抛物线对原函数进行拟合,在误差足够小的前提下近似得到原函数的积分值。

Simpson算法是将原曲线近似成一段段抛物线后积分,取曲线上两点 A ( a , 0 ) , B ( b , 0 ) A\left ( a, 0 \right ), B\left ( b, 0 \right ) A(a,0),B(b,0),然后等分,即
Δ x = b − a n \Delta x = \frac{b - a}{n} Δx=nba
对于每一段,作如下处理:
设区间起点为 x 2 i − 1 x_{2i - 1} x2i1,终点为 x 2 i x_{2i} x2i,中点为 x 2 i − 1 x_{2i - 1} x2i1,于是有利用过点 ( x 2 i − 2 , f ( x 2 i − 2 ) ) , ( x 2 i − 1 , f ( x 2 i − 1 ) ) , ( x 2 i , f ( x 2 i ) ) \left ( x_{2i - 2}, f\left ( x_{2i - 2} \right ) \right ), \left ( x_{2i - 1}, f\left ( x_{2i - 1} \right ) \right ), \left ( x_{2i}, f\left ( x_{2i} \right ) \right ) (x2i2,f(x2i2)),(x2i1,f(x2i1)),(x2i,f(x2i))的抛物线 g ( x ) = A x 2 + B x + C g\left ( x \right ) = Ax^2 + Bx + C g(x)=Ax2+Bx+C来取代 f ( x ) f\left ( x \right ) f(x),所以有:

f ( x 2 i − 2 ) = g ( x 2 i − 2 ) = A x 2 i − 2 2 + B x 2 i − 2 + C f\left ( x_{2i - 2} \right ) = g\left ( x_{2i - 2} \right ) = Ax_{2i - 2}^2 + Bx_{2i - 2} + C f(x2i2)=g(x2i2)=Ax2i22+Bx2i2+C

f ( x 2 i − 1 ) = g ( x 2 i − 1 ) = A x 2 i − 1 2 + B x 2 i − 1 + C = A ( x 2 i − 2 + x 2 i 2 ) 2 + B ( x 2 i − 2 + x 2 i 2 ) 2 + C f\left ( x_{2i - 1} \right ) = g\left ( x_{2i - 1} \right ) = Ax_{2i - 1}^2 + Bx_{2i - 1} + C = A\left ( \frac{x_{2i - 2} + x_{2i}}{2} \right )^2 + B\left ( \frac{x_{2i - 2} + x_{2i}}{2} \right )^2 + C f(x2i1)=g(x2i1)=Ax2i12+Bx2i1+C=A(2x2i2+x2i)2+B(2x2i2+x2i)2+C

f ( x 2 i ) = g ( x 2 i ) = A x 2 i 2 + B x 2 i + C f\left ( x_{2i} \right ) = g\left ( x_{2i} \right ) = Ax_{2i}^2 + Bx_{2i} + C f(x2i)=g(x2i)=Ax2i2+Bx2i+C

于是:
∫ x 2 i − 2 x 2 i f ( x ) d x ≈ ∫ x 2 i − 2 x 2 i g ( x ) d x = ( A 2 x 3 + B 2 x 2 + C x ) ∣ x 2 i − 2 x 2 i = Δ x 3 [ f ( x 2 i − 2 ) + 4 f ( x 2 i − 1 ) + f ( x 2 i ) ] \begin{aligned} \int_{x_{2i - 2}}^{x_{2i}} f\left (x \right )\mathrm{d}x \approx & \int_{x_{2i - 2}}^{x_{2i}} g\left (x \right )\mathrm{d}x\\ = & \left ( \frac{A}{2} x^3 + \frac{B}{2}x^2 + Cx\right )\bigg|_{x_{2i - 2}}^{x_{2i}}\\ = & \frac{\Delta x}{3}\left [ f\left ( x_{2i - 2} \right ) + 4f\left ( x_{2i - 1} \right ) + f\left( x_{2i} \right ) \right ] \end{aligned} x2i2x2if(x)dx==x2i2x2ig(x)dx(2Ax3+2Bx2+Cx)x2i2x2i3Δx[f(x2i2)+4f(x2i1)+f(x2i)]

∫ a b f ( x ) d x ≈ Δ x 3 ∑ i = 0 2 n − 2 [ f ( x 2 i ) + 4 f ( x 2 i + 1 ) + f ( x 2 i + 2 ) ] \int_{a}^{b} f\left ( x \right ) \mathrm{d}x \approx \frac{\Delta x}{3} \sum_{i = 0}^{2n - 2} \left [ f \left( x_{2i} \right) +4f \left ( x_{2i + 1} \right ) + f \left ( x_{2i + 2} \right ) \right ] abf(x)dx3Δxi=02n2[f(x2i)+4f(x2i+1)+f(x2i+2)]
特别地,当 n = 1 n = 1 n=1时,上式转化为
∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_{a}{b} f \left ( x \right ) \mathrm{d}x \approx \frac{b - a}{6} \left [ f \left ( a \right ) + 4f \left ( \frac{a + b}{2} \right ) + f \left ( b \right ) \right ] abf(x)dx6ba[f(a)+4f(2a+b)+f(b)]
称为三点Simpson法。

自适应Simpson算法

自适应Simpson算法在三点Simpson算法的基础上提高了精度和效率:

  1. 对区间 [ a , b ] \left [ a, b \right ] [a,b]取中点 m i d = a + b − a 2 mid = a + \frac{b - a}{2} mid=a+2ba
  2. 分别对区间 [ a , b ] \left [ a, b \right ] [a,b]、区间 [ a , m i d ] \left [ a, mid \right ] [a,mid]和区间 [ m i d , b ] \left [ mid, b \right ] [mid,b]运用三点Simpson算法;
  3. S 0 S_0 S0 S 1 + S 2 S_1 + S_2 S1+S2的误差小于 e p s eps eps时,可近似得到曲线积分,如若不然,则继续递归调用。

模板如下:

inline double function(double t)
{
	//所求积分函数
}
inline double simpson(double m, double n)
{
	double mid = m + (n - m) / 2;
	return (n - m) / 6 * (function(m) + 4 * function(mid) + function(n));	//拟合后进行数学整理得到的面积大小
}
double asr(double a, double b, double eps, double s)
{
	double mid = a + (b - a) / 2;
	double ls = simpson(a, mid), rs = simpson(mid, b);
	if (fabs(ls + rs - s) < 16 * eps)		//中点左右两部分的面积和与整个面积相差很小则可得到积分值
		return ls + rs + (ls + rs - s) / 16;
	return asr(a, mid, eps / 2, ls) + asr(mid, b, eps / 2, rs);
}

参考博客

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值