平差重要公式

平差重要公式


重要常数:

1 p p m = 1 0 − 6 m m 1ppm=10^{-6}mm 1ppm=106mm
1弧度=206265秒


符号习惯:

真值: L i ~ \tilde{L_i} Li~
观测值: L i L_i Li
每个测站的中误差 σ 站 \sigma_站 σ
AB测量中误差 σ A B \sigma_{AB} σAB


重要公式:

1. 真误差:
Δ i = L i ~ − L i \quad\Delta_i=\tilde{L_i}-L_i Δi=Li~Li(真值减去观测值)
若以被观测量的期望E(L)来代替真值,则:
在这里插入图片描述

2. 方差:
σ 2 = lim ⁡ n → ∞ ∑ i = 1 n Δ i 2 n σ^2=\displaystyle \lim_{n\to \infty}{\frac{\sum^{n}_{i=1}\Delta_i^2}{n}} σ2=nlimni=1nΔi2
3. 中误差:
σ = lim ⁡ n → ∞ ∑ i = 1 n Δ i 2 n σ=\displaystyle \lim_{n \to \infty}{\sqrt{\frac{\sum^{n}_{i=1}\Delta_i^2}{n}}} σ=nlimni=1nΔi2
4. 估值:
σ ^ 2 = ∑ i = 1 n Δ i 2 n \hat{σ}^2=\frac{\sum^{n}_{i=1}\Delta_i^2}{n} σ^2=ni=1nΔi2
σ ^ = ∑ i = 1 n Δ i 2 n \hat{σ}=\sqrt{\frac{\sum^{n}_{i=1}\Delta_i^2}{n}} σ^=ni=1nΔi2
5. 平均误差:
θ = lim ⁡ n → ∞ ∑ i = 1 n ∣ Δ i ∣ n = 4 5 σ θ=\displaystyle \lim_{n\to\infty}{\displaystyle{\frac{\sum^{n}_{i=1}|\Delta_i|}{n}}}=\frac{4}{5}\sigma θ=nlimni=1nΔi=54σ(估值去掉极限即可)
**6. 或然误差:**几何意义为正态分布的1/2分位点,计算时取中位数即可
ρ = 2 3 σ ρ=\frac{2}{3}σ ρ=32σ
7. 极限误差:
Δ 限 = 3 σ \Delta_限=3σ Δ=3σ(有时为2倍,用于排除粗差)
8. 相对误差:
K = ∣ m ∣ D K=\frac{|m|}{D} K=Dm(其中m为中误差,D为观测值)
9. 精度匹配问题:
(1)已知长度观测值为 L + m L+m L+m(L为观测值,m为中误差),则角度匹配精度为 σ = ∣ m ∣ L ρ \sigma=\frac{|m|}{L}\rho σ=Lmρ
(2)已知角度观测误差为 θ \theta θ,观测长度为L,则长度匹配精度为 ∣ m ∣ = σ L ρ |m|=\frac{\sigma L}{\rho} m=ρσL
10. 精度:(针对偶然误差,表征偶然误差大小的统计量)
(1)观测向量的精度指标——协方差阵:
随机变量 X = [ X 1 X 2 . . . X n ] T X=[X_1\quad X_2\quad ...\quad X_n]^T X=[X1X2...Xn]T的数学期望为 E ( X ) = [ E ( X 1 ) E ( X 2 ) . . . E ( X n ) ] E(X)=\begin{bmatrix} E(X_1)\\ E(X_2)\\ ...\\ E(X_n) \end{bmatrix} E(X)=E(X1)E(X2)...E(Xn)
那么有方差-协方差阵: D x x n n = [ σ X 1 2 σ X 1 X 2 . . . σ X 1 X n σ X 2 X 1 σ X 2 2 . . . σ X 2 X n . . . . . . . . . σ X n X 1 σ X n X 2 . . . σ X n 2 ] {D_{xx}\atop{nn}}=\begin{bmatrix} \sigma_{X_1}^2\quad \sigma_{X_1X_2}\quad ...\quad \sigma_{X_1X_n}\\ \sigma_{X_2X_1}\quad \sigma_{X_2}^2\quad ...\quad \sigma_{X_2X_n}\\ ...\quad ...\quad \quad \quad ...\\ \sigma_{X_nX_1}\quad \sigma_{X_nX_2}\quad ...\quad \sigma_{X_n}^2\\ \end{bmatrix} nnDxx=σX12σX1X2...σX1XnσX2X1σX22...σX2Xn.........σXnX1σXnX2...σXn2(可以看作是偶然误差的标准差,是统计概念,只用来评定整体的精度,内部之间不做比较)
协方差的计算与性质: σ X i X j = σ X j X i \sigma_{X_iX_j}=\sigma_{X_jX_i} σXiXj=σXjXi σ X i X j = lim ⁡ n → ∞ ∑ k = 1 n ( Δ i k Δ j k ) n \quad\sigma_{X_iX_j}=\displaystyle \lim_{n \to \infty}{\frac{\sum^{n}_{k=1}(\Delta_{ik}\Delta{jk})}{n}} σXiXj=nlimnk=1n(ΔikΔjk)(估值去掉极限即可)
(2)互协方差阵:
两组观测向量 X n 1 , Y r 1 {X\atop{n1}},{Y\atop{r1}} n1Xr1Y,期望分别为 E ( X ) n 1 , E ( Y ) r 1 {E(X)\atop{n1}},{E(Y)\atop{r1}} n1E(X),r1E(Y),记在这里插入图片描述

在这里插入图片描述

其中 D X X D_{XX} DXX D Y Y D_{YY} DYY分别为X和Y的协方差阵,而: D X Y = [ σ x 1 y 1 σ x 1 y 2 . . . σ x 1 y r σ x 2 y 1 σ x 2 y 2 . . . σ x 2 y r . . . . . . . . . σ x n y 1 σ x n y 2 . . . σ x n y r ] D_{XY}=\begin{bmatrix} \sigma_{x_1y_1}\quad \sigma_{x_1y_2}\quad ...\quad \sigma_{x_1y_r}\\ \sigma_{x_2y_1}\quad \sigma_{x_2y_2}\quad ...\quad \sigma_{x_2y_r}\\ ...\quad ...\quad \quad \quad ...\\ \sigma_{x_ny_1}\quad \sigma_{x_ny_2}\quad ...\quad \sigma_{x_ny_r}\\ \end{bmatrix} DXY=σx1y1σx1y2...σx1yrσx2y1σx2y2...σx2yr.........σxny1σxny2...σxnyr
D X Y = D Y X T D_{XY}=D_{YX}^T DXY=DYXT
11. 准确度:
ε = X ~ − E ( X ) \varepsilon=\tilde{X}-E(X) ε=X~E(X)(随机变量X的真值与其数学期望之差)(表征了观测结果系统误差大小)
12. 精确度
均方误差: M S E ( X ) = E ( X − X ~ ) 2 MSE(X)=E(X-\tilde{X})^2 MSE(X)=E(XX~)2(观测结果与其真值的的接近程度,当不存在系统误差时,精确度=精度)
M S E ( X ) = σ X 2 + ( E ( X ) − X ~ ) 2 MSE(X)={\sigma_X}^2+(E(X)-\tilde{X})^2 MSE(X)=σX2+(E(X)X~)2
13. 测量不确定度:
(1)标准不确定度:中误差
(2)偶然误差限:2倍中误差
14. 协方差传播率:
(1)单线性函数( Z = K X + K 0 Z=KX+K_0 Z=KX+K0)的方差: D Z Z 1 1 = σ Z 2 = K D X X K T {D_{ZZ}\atop{1\quad 1}}=\sigma_Z^2=KD_{XX}K^T 11DZZ=σZ2=KDXXKT
(2)多线性函数( Z t 1 = K X + K 0 {Z\atop{t\quad 1}}=KX+K_0 t1Z=KX+K0)的方差: D Z Z t t = σ Z 2 = K D X X K T {D_{ZZ}\atop{t\quad t}}=\sigma_Z^2=KD_{XX}K^T ttDZZ=σZ2=KDXXKT
$\quad \quad 若 还 有 若还有 Y=FX+F_0 , 则 有 互 协 方 差 阵 ,则有互协方差阵 D_{YZ}=FD_{XX}K^T$ D Z Y = K D X X F T \quad D_{ZY}=KD_{XX}F^T DZY=KDXXFT
(3)非线性函数( Z = f ( x ) Z=f(x) Z=f(x))的方差:线性化的方法:方法1:泰勒展开;方法2:求取函数的全微分,之后利用1,2求方差即可
(4)注意事项:

  • 统一单位
  • 某些函数可以先取对数,再求比较方便
  • 在许多题目中近似值用观测值来代替
    (5)应用:
  • 水准测量的精度:前提是独立等精度观测,则有 σ A B 2 = N σ 站 2 \sigma_{AB}^2=N\sigma_站^2 σAB2=Nσ2
  • 同精度独立观测值的算术平均值的精度: σ x = 1 N σ \sigma_x=\frac{1}{\sqrt{N}}\sigma σx=N 1σ(若只给出观测值计算的两个公式 若 已 知 真 值 σ = ± [ Δ Δ ] n , 若已知真值\sigma=\pm\sqrt{\frac{[\Delta\Delta]}{n}}, σ=±n[ΔΔ] 若 不 知 道 真 值 , 就 要 计 算 改 正 数 σ = ± [ v v ] n − 1 若不知道真值,就要计算改正数\sigma=\pm\sqrt{\frac{[vv]}{n-1}} σ=±n1[vv] )
  • 若干独立误差的联合影响:平方和
  • 交会定点的精度:
  • GIS线元要素的方差:详见书P41页
    15.权与定权的方法:
    (1)权: p i = σ 0 2 σ i 2 p_i=\frac{\sigma_0^2}{\sigma_i^2} pi=σi2σ02表示各观测值方差之间比例关系的数字特征
    (2)意义:方差越小,精度越高,权越大
    (3) σ 0 \sigma_0 σ0:任意选择,称为单位权中误差; σ 0 2 \sigma_0^2 σ02:单位权方差因子
    (4)几个重要结论:
  • 水准测量的权:路线的权与测站数或距离成反比
  • 同精度观测值算术平均值的的权:与观测次数成正比
    16.协因数方差阵:
    (1)协因数即为权的倒数,而互协因数为协方差除以方差
    (2)协因数阵:协因数阵即为协方差阵除以相应的单位权中误差,也因此,协因数阵中对应位置为对应元素的权倒数
    (3)权阵: P X X = Q X X − 1 P_{XX}=Q_{XX}^{-1} PXX=QXX1权阵中并没有权值,权阵唯一的作用仅仅只是取逆后得到协因数阵求权
    (4)逆矩阵求法:(由于协方差阵是对称阵,因而其逆矩阵也为对称阵) A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac{A^*}{|A|} A1=AA(不要算错!!!)
    17.协因数传播律:
    (1)形式上同协方差传播律
    (2)几个结论:
  • 独立等精度观测,算术平均值的权等于观测值之权的n倍
  • 独立观测,带权平均值的权等于各观测值权之和
  • 书P54页例题
    18.带权的中误差计算:
    (1)对于真误差已知,将相应的误差平方乘上权就好
    (2)对于真误差未知,将相应的改正数平方乘上权,再将n换为n-1
    (3)三角形闭合差求测角中误差:费列罗公式: σ β ^ = ∑ i = 1 n ω i 2 3 n , 其 中 ω 为 闭 合 差 , n 为 次 数 \hat{σ_{\beta}}=\sqrt{\frac{\sum^{n}_{i=1}\omega_i^2}{3n}},其中\omega为闭合差,n为次数 σβ^=3ni=1nωi2 ωn

19.条件平差的函数模型:实际观测值个数n,必要观测个数t,多余观测r=n-t,即可建立r个条件方程。 L ~ = L + Δ \tilde{L}=L+\Delta L~=L+Δ
非线性情况: F i ( L ~ ) = 0 ( i = 1 , 2 , . . . , r ) F_i(\tilde{L})=0\quad(i=1,2,...,r) Fi(L~)=0(i=1,2,...,r)
线性情况: A L ~ + A 0 = 0 o r A Δ + W = 0 W = ( A L + A 0 ) A\tilde{L}+A_0=0\quad or\quad A\Delta+W=0\quad W=(AL+A_0) AL~+A0=0orAΔ+W=0W=(AL+A0)
(要注意的是这几个方程一定是无关的)
条件平差的缺点:有时待求量并非观测量,因而应用不便
附有参数的条件平差函数模型:设在平差问题中,观测值个数为n,t为必要观测数,则可列出r=n–t个条件方程;若再增加u个独立参数,0<u <t,则每增设一个参数应增加一个条件方程,构成附有参数的条件平差法。
非线性形式: F ( L ~ X ~ ) = 0 c = r + u F(\tilde{L}\quad \tilde{X})=0\quad c=r+u F(L~X~)=0c=r+u
线性形式: A L ~ + B L ~ + A 0 = 0 A Δ + B X ~ + W = 0 W = A L + A 0 A\tilde{L}+B\tilde{L}+A_0=0\quad A\Delta+B\tilde{X}+W=0\quad W=AL+A_0 AL~+BL~+A0=0AΔ+BX~+W=0W=AL+A0
附有参数的条件平差,其
特点
是观测量和参数同时作为模型中的未知量参与平差,是间接平差和条件平差的混合模型。此平差问题,由于增选了u个参数,条件方程总数由r个增加到c=r+u个,平差自由度即多余观测数不变,仍为r(r=c-u)。

20.间接平差的函数模型:选择几何模型中t个独立变量为平差参数,每一个观测量都能够表达成所选参数的函数,即列出n个这种函数关系式。
非线性形式: L ~ = F ( X ~ ) \tilde{L}=F(\tilde{X}) L~=F(X~)
线性形式: L ~ = B X ~ + d o r l + Δ = B X ~ l = L − d \tilde{L}=B\tilde{X}+d\quad or\quad l+\Delta=B\tilde{X}\quad l=L-d L~=BX~+dorl+Δ=BX~l=Ld
(基本思路就是利用选定的参数表达观测值)
在测量控制网中,常采用待定点的坐标为平差参数建立观测方程,这是间接平差的特点

附有限制条件的间接平差函数模型:如选u>t个参数,包含t个独立参数,则多选的s=u–t个参数必是t个独立参数的函数,亦即在u个参数之间存在着s个函数关系,它们是用来约束参数之间应满足的关系。
非线性形式: L ~ = F ( X ~ ) Φ ( X ~ ) = 0 \tilde{L}=F(\tilde{X})\\\Phi(\tilde{X})=0 L~=F(X~)Φ(X~)=0
线性形式: L ~ = B X ~ + d C X ~ + W s = 0 \tilde{L}=B\tilde{X}+d\\C\tilde{X}+W_s=0 L~=BX~+dCX~+Ws=0
or
Δ = B X ~ − l l = L − d \Delta=B\tilde{X}-l\\l=L-d Δ=BX~ll=Ld
(对以上函数模型,还可以利用泰勒级数进行线性化处理)


基础知识:

  1. 测量或观测:用一定的仪器、工具、传感器或其他手段采集、获取反映地球或其他实体空间分布有关信息的过程和结果。(获取地球的形状、大小以及地表(包括地面上各种物体)的几何形状及其空间位置的过程)
  2. 在测角时,盘左盘右相差180度且一测回测两次,误差需要扩大根号2倍
  3. 误差来源:测量仪器、观测者、外界条件。(三者统称观测条件)
  4. 确保观测成果质量的有效措施:多同一个量做多次观测,例如 n 次 (n>1),形成多余观测。
    必要观测数是能够得到测量结果的最小观测数目,用t表示
    多余观测数多于未知量的观测数目,用r表示, r = n − t r = n - t r=nt
  5. 不管观测条件如何,观测的结果总会产生这样或那样的误差,即测量中不可避免产生误差。但是在客观条件允许的限度内,测量工作者可以而且必须确保观测成果具有较高的质量。
  6. 误差分类:偶然误差、系统误差、粗差
    偶然误差:在相同的观测条件下作一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差看,其大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差。
    系统误差:在相同的观测条件下作一系列的观测,如果误差在大小、符号上表现出系统性,或者在观测过程中按一定的规律变化,或者为某一常数,那么,这种误差就称为系统误差。
    粗差:粗差即粗大误差,是指比在正常观测条件下所可能出现的最大误差还要大的误差,通俗地说,粗差要比偶然误差大好几倍。例如观测时大数读错,计算机输入数据错误,控制网起始数据错误等。
  7. 误差的表现形式 :多次观测时重复观测值之间存在差异;实际观测值不满足应有的理论关系:如三角形内角和、测距(往返测)、角度(盘左、盘右)、水准(环闭合差)
  8. 观测的分类:
    直接观测:直接用测量仪器或传感器测取所需要的观测量,称为直接观测;被观测的量可直接与其单位长度进行比较。(角度、距离、空气湿度、温度、身高、体重、计时)
    间接观测:被观测量由直接观测量通过某种确定的函数关系(公理、定理),计算得到的观测过程称为间接观测。(运动速度、物体体积、耕地面积、水准高程、卫星定位)
    静态观测:在测量过程中被观测的物理量稳定不变。(角度、距离、矢量地图、大型工程、建筑三维结构)
    动态观测:在测量过程中被观测的物理量是变化的。(视频监控、交通监测、运动计步、无人驾驶、目标实时定位)
  9. 研究对象:如何处理带有误差的观测值,找出待求量(未知量)的最佳估值。
    测量平差的含义:依据某种最优化准则,由一系列带有观测误差的测量数据,求定未知量的最佳估值及精度的理论和方法。
    基本任务:如何处理由于多余观测引起的观测值之间的不符值或闭合差,求出未知量的最佳估值并评定结果的精度。
  10. 测量平差的基本问题
    估值计算:根据观测量求某些量在一定统计意义下的估值。
    衡量观测数据(估值)的精度:观测数据相对于真值或统计估值的中误差。
    优化估值计算的模型
  11. 必要元素的概念:能够唯一确定一个几何模型所必要的元素
    确定某个模型所必需的最少的元素个数,称为必要元素数,记必要元素数的符号为t
    (基本模型:三角形在确定不同元素时的不同的必要元素,水准测量在不同情况下不同的必要观测数)
    性质:(1)必要元素的个数t只取决于模型本身
    (2)所有的必要元素都是彼此函数独立的量
    (3)模型中所有的量都是必要元素的函数
    (4)一个模型中函数独立的量有且只有t个
    (5)模型中作为必要元素的“量”不是唯一的
  12. 必要观测量通过观测得到的必要元素
    必要观测数确定某个模型所必需的最少的观测值的个数,必要观测数用符号t表示
    要点:在有已知点的水准网中,必要观测个数等于未知点的个数
    没有已知点的水准网中,必要观测个数等于未知点个数减1
  13. 多余观测数:确定几何模型所需的最大独立观测个数为t,再多进行任何观测,则观测值之间就相关,形成函数关系,称为多余观测数,也称自由度。观测值个数n与必要观测数t之差,一般用r表示: r = n − t r=n-t r=nt
  14. 什么是测量平差?
    观测值中包含有“误差”,对某“元素”进行多次观测,多次观测结果并不相等。
    对该“元素”只作一次观测,该观测值是否不含误差?
    此时无法发现观测值所含误差,结果不可靠。为了保证观测结果的正确性,必须对该“量”进行两次或两次以上的观测,使得误差通过观测值之间的差异表现出来,平差的主要任务就是“消除差异”,求出被观测量的最可靠结果。
  15. 平差存在的原因:必要观测可以唯一确定模型,其相互独立。有多余观测必然可用这t个元素表示,即形成r个条件,通过r个条件,便可以对观测值进行平差。
  16. n < t,则无法确定模型
    n = t,唯一确定模型,但不能发现粗差。
    n > t,可以确定模型,还可以发现粗差。
    观测值个数用n 表示,必要观测数用t 表示。
  17. 函数模型是描述观测量与未知量间的数学函数关系的模型,是确定客观实际的本质或特征的模型。
    函数模型分为:线性和非线性两类。
    测量平差目的:最优估计函数模型的未知量,并评价其精度

y ^ t + h ∣ t = ι t + h b t \hat{y}_{t+h|t}=\iota _{t} + hb_{t} y^t+ht=ιt+hbt

ι t = α y t + ( 1 − α ) ( ι t − 1 + b t − 1 ) \iota _{t}=\alpha y_t+(1-\alpha )(\iota _{t-1}+b_{t-1}) ιt=αyt+(1α)(ιt1+bt1)

b t = β ∗ ( ι t − ι t − 1 ) + ( 1 − β ) b t − 1 b_t=\beta *(\iota _t-\iota _{t-1})+(1-\beta )b_{t-1} bt=β(ιtιt1)+(1β)bt1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值