CogVLM视觉大模型本地部署跑起来

本文介绍了如何下载THUDM/CogVLM项目的模型,包括手动下载、Python环境设置(至少3.10)、库安装(如HuggingFaceHub),以及处理CUDA内存问题的解决方案。最后提到使用streamlit运行的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设备:显存24G​​​​​​​ 项目链接xCogVLM/README_zh.md at main · THUDM/CogVLM · GitHub

下载完项目,需要手动下载模型,在线下载很慢

模型下载链接:https://huggingface.co/THUDM

进入网址搜一下,具体的模型名,绿箭头那块搜索模型名就出来,或者直接下拉到最下边找一找

找到之后,下载只能一个个的点击下载,全点完之后下载完确认文件数一样,还有个

gitattributes这个文件是个隐藏文件,下载下来的文件前面那个 .  是没有的,重命名加上

CogVLM-main/composite_demo/client.py下的四个模型文件(我只下载了前俩个,根据需要下载)搜索复制粘贴过去,最好是一样的,具体的根据情况选择

lmsys/vicuna-7b-v1.5
THUDM/cogagent-chat-hf
THUDM/cogvlm-chat-hf
THUDM/cogvlm-grounding-generalist-hf

然后新建一个python=3.10的环境,低于3.10的环境,代码跑不起来,这个最低要求python环境3.10,在之后安装库

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple      

这是带着清华镜像源比较快,当然也可自己更换镜像源
安装完库,会报错huggingface_hub没有这个库,你需要安装,别安装最新的,安装最新会报错
(_text_generation.py和其他component不兼容 当前版本被disable了 <0.22.0就行)

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple huggingface_hub==0.19.4

我安装的是0.19.4,当然你可以根据情况来安装<0.22.0就行

我在ubuntu运行的时候,python main会报错

在网上查资料:     streamlit run main.py [ARGUMENTS]         输入此命令就可以了

果然可以了,输出这个的时候会跳转网页

这基本就是一个大概的流程

刚开始我没注释模型后三个,THUDM/cogagent-chat-hf | THUDM/cogvlm-chat-hf | THUDM/cogvlm-grounding-generalist-hf,显示报错cuda内存不够,后来我想着一个个的运行会好点,第一个模型运行就出来网页了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值