【神经网络】{4} ——多元分类

本文介绍了如何使用神经网络处理多类别分类问题,以手写数字识别为例,阐述了一对多法的拓展应用。通过建立四输出单元的神经网络,每个输出对应一类目标,如行人、汽车、摩托车或货车。训练过程中,目标是使神经网络的输出接近于对应类别的标记向量,以实现对多种物体的识别。
摘要由CSDN通过智能技术生成

如何利用神经网络解决多类别分类问题?

(手写数字的识别问题,其实就是一个多类别分类问题,因为它有 10 10 10 种需要识别的类别,也就是数字 0 0 0 9 9 9。)

要在神经网络中实现多类别分类,采用的方法本质上是一对多法的拓展。


假设有一个计算机视觉的例子,我们不只需要识别出图中的汽车,现在我们需要识别四个类别的对象,通过图像来辨别出哪些是行人、汽车、摩托车或者货车:
在这里插入图片描述

这样的话,我们要做的就是建立一个有四个输出单元的神经网络:
在这里插入图片描述
现在神经网络的输出将是一个含 4 4 4 个数的向量:
在这里插入图片描述
输出变成了一个四维的向量,那么现在要做的就是,用第一个输出单元来判断图中是否是一个行人,再用第二个输出单元来判断图片中是否是一辆汽车,以此类推……


当图像中是一个行人时,理想情况下,这个网络会输出:
在这里插入图片描述
当图中是一辆汽车时,希望输出:
在这里插入图片描述
以此类推……


现在可以说我们有 4 4 4

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值