如何利用神经网络解决多类别分类问题?
(手写数字的识别问题,其实就是一个多类别分类问题,因为它有 10 10 10 种需要识别的类别,也就是数字 0 0 0 到 9 9 9。)
要在神经网络中实现多类别分类,采用的方法本质上是一对多法的拓展。
假设有一个计算机视觉的例子,我们不只需要识别出图中的汽车,现在我们需要识别四个类别的对象,通过图像来辨别出哪些是行人、汽车、摩托车或者货车:
这样的话,我们要做的就是建立一个有四个输出单元的神经网络:
现在神经网络的输出将是一个含 4 4 4 个数的向量:
输出变成了一个四维的向量,那么现在要做的就是,用第一个输出单元来判断图中是否是一个行人,再用第二个输出单元来判断图片中是否是一辆汽车,以此类推……
当图像中是一个行人时,理想情况下,这个网络会输出:
当图中是一辆汽车时,希望输出:
以此类推……
现在可以说我们有 4 4 4