【K-Means算法】{1} —— 使用Python实现K-Means算法并处理iris数据集

本文介绍了如何使用Python实现K-Means聚类算法,并通过Iris数据集进行实例演示,详细阐述了算法过程及输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此处基于K-Means算法处理Iris数据集


KMeans.py模块:

import numpy as np


class KMeansClassifier():

	"""初始化KMeansClassifier类"""
    def __init__(self, k=3, initCent='random', max_iter=500):
        # 类的成员数据(变量前用下划线)
        self._k = k # 中心点
        self._initCent = initCent # 生成初始中心点
        self._max_iter = max_iter # 最大迭代次数
        self._clusterAssment = None # 点分配结果
        self._labels = None
        self._sse = None # 误差平方和
        
        
    def _calEDist(self, arrA, arrB):
        """计算欧氏距离,参数为一维数组"""
        return np.math.sqrt(sum(np.power(arrA-arrB, 2)))
    
    
    def _calMDist(self, arrA, arrB):
        """计算曼哈顿距离,参数为一维数组"""
        return sum(np.abs(arrA-arrB))


    def _randCent(self, data_X, k):
        """随机选取k个质心,返回一个k*n的质心矩阵"""
        n = data_X.shape[1] # 特征的维度
        centroids = np.empty((k,n)) # 使用numpy生成一个k*n的矩阵,用于存储质心
        for j in range(n):
            minJ = 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值