努力学习人工智能
文章平均质量分 77
努力学习人工智能
程子的小段
关注一下我的B站账号吧:https://space.bilibili.com/481428639?spm_id_from=333.1007.0.0
展开
-
Hadoop的伪分布式安装
内存ddr34G及以上的x86架构主机一部系统环境windows。原创 2022-07-23 10:38:42 · 2129 阅读 · 0 评论 -
作物叶片病害识别系统
大部分植物病害的发生往往首先表现在叶片上,病害往往导致叶片出现病斑,而且不同类型的病害会导致叶片出现不同颜色、形状和纹理的病斑,见图2-1。因此,基于病害叶片图像的植物病害识别方法研究一直是植物保护、图像处理、计算机视觉和模式识别等众多领域的一个重要的研究方向,出现了很多基于叶片图像的植物病害识别方法。其中,特征提取是这些方法的一个关键步骤,提取出的特征的优劣直接影响病害识别算法的识别精度。...原创 2022-07-22 23:15:27 · 3639 阅读 · 2 评论 -
基于深度神经网络的中药材识别
近年来,受到我国国民经济发展与社会财富积累增速加快的影响,人们对自己的身体健康也越来越重视,很多的人都选择在服用中草药来治疗疾病、改善体质,因此,我国的中药材行业在这一段时间内也迎来了蓬勃的发展。人们对中医健康养生越来越重视,而中药材是中医健康养生体系的重要组成部分。中药材种类纷繁复杂,普通人对中药材的辨识知识比较匮乏,这可能会导致误用等不良后果。自从2006年,深度学习被提出以来,它在文本、语音、图像等信息载体的智能应用领域取得巨大的进步。...原创 2022-07-20 20:06:28 · 8499 阅读 · 13 评论 -
早期肺结核检测
肺癌在全世界范围内的发病率和死亡率居高不下,其早期的诊断和治疗能够有效提高患者的生存率。肺结节是肺癌早期的主要表现形式,因此对肺部可疑的肺结节进行定位与诊断具有重要意义。肺结节的形态特征和周围环境较为复杂,且可能被误认为邻近器官。随着计算机断层扫描技术的发展,仅凭放射科医生肉眼评估和诊断,需要消耗大量的时间和精力,易造成漏诊或误诊等问题。因此,肺结节早期检测任务具有一定的挑战性。计算机辅助诊断技术通过定位可疑病灶区域供医师参考,能够提高诊断效率并降低人工阅片的主观性和不稳定性。...原创 2022-07-18 19:04:27 · 3701 阅读 · 1 评论 -
遥感影像目标检测
高分辨率遥感影像具有包含信息大厦,自然场景复杂等特点,一副遥感影像中往往包含大量的建筑物、场地、植被、农田等多类别地物和地貌要素信息,如何利用高干影响来实施精准快速的地物要素自动化检测提取,一直以来是热点的研究内容,随着深度学习技术的快速发展,许多基于卷积神经网络的目标检测模型被应用到了遥感影像目标检测任务中,取得了不错的成果。...原创 2022-07-17 20:12:22 · 5378 阅读 · 5 评论 -
基于机器学习的笑脸检测
目前已经有很多的基于机器学习的方法用来进行人脸面部表情分析,然而,它们中的大部分都是在公开人脸库上进行测试。这些公开库里面仅有为数不多的几个人的图片,而且通常都是光照条件良好的图片。因此,用这些公开库做的表情分析算法,当应用在实际图片中的情况下,并不见得能取得较好的效果。为提升人工智能环境下笑脸表情识别正确率,将笑脸表情识别与人工智能更好地结合起来,进行笑脸识别技术研究。角点检测;笑脸检测;特征提取;支持向量机;特征曲线。...原创 2022-07-15 08:28:41 · 1329 阅读 · 0 评论 -
数字视网膜图像血管分割
随着图像处理技术迅猛发展,人们能够更好治疗某些疾病以及预后恢复情况的及时监控,从而使得诊疗水平得到极大的改善。 图像计算机系统的建立,可以对眼底很多组织进行定量,测量和检测,在正常和异常间做出明确鉴别,使系统的研究逐渐向标准化发展。医学图像处理是图像处理领域中的重点与难点问题之一。随着数字图像处理技术的快速发展,借助电子计算机等辅助手段,医学图像的提取方法以及图像质量都得到极大的提高。眼底视网膜图像使人体唯一可以非创伤直接观察的较深层微血管,对视网膜血管的分析研究有助于疾病的精确诊断。然而,由于视网膜血管图原创 2022-07-14 08:43:32 · 2850 阅读 · 2 评论 -
乳腺癌智能诊断
乳腺癌智能诊断对乳腺癌诊断与医治具有重要意义。基于深度学习在图像分类领域的优异性能,本文研究基于图像分类技术的乳腺癌智能诊断方法。采用乳腺癌早期筛查及风险评估的临床数据,以触诊成像诊断结果为对比数据,通过决策树等机器学习算法以及投票法,对乳腺肿瘤的良恶性质进行判定。使用SMOTE算法对数据进行处理,建立了诊断模型和方法,自动完成对乳腺肿瘤性质的诊断。实验结果表明,乳腺癌正确筛查的准确性达到98%,提出的方法具有很好的应用价值。关键词 图像分类;临床数据;卷积神经网络;机器学习近年来,乳腺癌已成为威胁女性健原创 2022-07-13 11:55:54 · 842 阅读 · 1 评论 -
基于眼底照片的病理性近视眼及识别
在临床医学上,眼科医生依据眼底疾病患者的眼底彩照图像进行详细的筛查与诊断并给出具体的治疗方案。然而,由于每位眼科医生的临床诊断经验存在差异,这将会严重影响人工诊断的效率与效果。甚至,有些地域受限于当地医疗资源,病理性高度近视患者无法得到及时的诊疗,容易造成不可挽回的人眼视力损伤和失明。因此,本文通过运用数字图像处理、计算机视觉以及深度学习等领域的方法,致力于对患者的眼底彩照图像进行精确的处理和实现疾病的自动诊断。关键词 图像分类;病理性近视眼;计算机视觉;疾病诊断本文从三个方面对病理性近视眼进行研究;(原创 2022-07-12 08:46:14 · 2740 阅读 · 3 评论 -
基于图像识别的跌倒检测
随着人口老龄化日益增加,老年人跌倒的比例逐年增高,本论文研究通过采集身体姿态数据来判断是否发生跌倒。选用背景差分法和形态学算法提取目标骨架,骨架提取经历九步:图像灰度化,背景差分法提取目标轮廓,使用CLAHE算法增强对比度,高斯滤波,Solel算子进行边缘检测,小波去噪,最大类间误差法二值化,形态学运算和中值滤波。然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。算法总体效果可以,误检较少。关键词 跌倒检测;身体姿态检测;背景差分析;SVM在美国,每年在65岁以上老人中,平均每原创 2022-07-11 08:20:54 · 4454 阅读 · 2 评论 -
基于卷积神经网络的皮肤癌检测系统
医疗领域对皮肤癌早期诊断的需求越来越大,因此皮肤癌检测具有重要的研究意义和应用价值。提出的皮肤癌检测系统主要包括皮肤图像预处理、特征提取、模型构建和检测分类等四个功能模块。系统首先采用图像去噪,图像分割等图像预处理技术来得到所需的输入图像,接着使用皮肤镜交互图像集,采用 ABCD 准则进行特征提取,采用神经网络工具箱进行学习模型的构建,最后将测试数据集输入到建立的模型中进行检测分类。仿真实验表明,系统具有识别率高,应用性强的优点。关键词 图像分类;皮肤癌检测;ABCD 准则;神经网络近些年来皮肤癌的患病人原创 2022-07-10 08:47:48 · 3801 阅读 · 4 评论 -
基于卷积神经网络的辛普森角色识别
基于深度学习在图像分类领域的优异性能,本文研究基于图像识别技术的辛普森角色自动识别方法。首先采集18个角色的16503幅辛普森角色图像数据集,然后在CNN模型框架下,修改最顶端的全连接层与分类输出层组成卷积网络主体结构,并采用数据增强和Dropout技术防止过拟合。实验结果验证了卷积神经网络在辛普森角色品种图像识别任务上具有优越性能,在测试集上的卷积神经网络识别准确率达到96%。关键词 图像识别;辛普森角色;卷积神经网络;特征学习;《辛普森一家》是由马特·格勒宁创作,经美国福克斯广播公司出品的一部家庭动画原创 2022-07-08 08:29:25 · 598 阅读 · 0 评论 -
基于机器学习算法的慢性肾病危险因素预测
慢性肾脏病(CKD)患者逐年增加,心血管疾病作为其最主要的并发症,决定着CKD患者的预后。尽管目前临床医师已经对CKD患者进行了相对全面的检查,并已经使用药物对心脏功能进行早期的干预性治疗,但CKD患者心血管疾病并发症仍有很高的发生率及病死率。CK不仅仅是一个临床问题,肾脏替代治疗消耗大量的医疗资源,患者生活质量大大下降。慢性肾病(CKD)是一个日益严重的医学问题,它会降低肾功能的生产力,进而损害肾脏。CKD现在很常见;心血管感染和终末期肾病是两种威胁生命的疾病,可作为CKD的后遗症引起。可以想象,通过早期原创 2022-07-07 07:58:37 · 2673 阅读 · 2 评论 -
基于蝴蝶种类识别
针对现有蝴蝶识别研究中所用数据集蝴蝶种类偏少,且只含有蝴蝶标本照片,不含生态环境中蝴蝶照片的问题,发布了一个同时包含标本照片和生态照片的蝴蝶图像数据集,其中标本照片包含全部中国蝶类志蝴蝶种类,共计4 270张照片,1 176种,蝴蝶生态环境下照片1 425张,111种.提出基于深度学习技术Faster R-CNN的蝴蝶种类自动识别系统,包括生态照片中蝴蝶位置的自动检测和物种鉴定.实验去除只含有单张生态照片的蝴蝶种类,对剩余的蝴蝶生态照片进行5-5划分,构造2种不同训练数据集:一半生态照片+全部模式照片,一半原创 2022-07-06 07:25:00 · 1898 阅读 · 1 评论 -
基于YOLOv3的口罩佩戴检测
为解决市民口罩佩戴目标检测中因小尺寸目标较多导致其识别精度不高的问题,提出一种基于 YOLOv3改进的算法 M_YOLOv3。重构特征金字塔机制,把原本3*3的类金字塔结构扩建为4*4尺寸,把先验框数量由9增加到16,通过 以上方法降低神经网络感受野,增强 M_YOLOv3对小尺寸目标的敏感度。将原有的损失函数IoU 替 换 为 DIoU ,解决边框回归时难以确认梯度下降方向的问题。基于网络公开的4065张口罩数据集的实验结果表明,M_YOLOv3的 mAP(平均精 度均值)为88.4,较 Tiny_YOL原创 2022-07-05 12:03:51 · 2437 阅读 · 0 评论 -
基于YOLOv1的口罩佩戴检测
近些年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于 Region Proposal 的 R-CNN 系算法(R-CNN,Fast R-CNN, Faster R-CNN),它们是 two-stage 的,需要先使用启发式方法(selective search)或者 CNN 网络(RPN)产生 Region Proposal,然后再在 Region Proposal 上做分类与回归。而另一类是 Yolo、SSD 这类 one-stage 算法,其仅仅使用一个 CNN 网络直接预测不原创 2022-07-04 09:46:42 · 337 阅读 · 0 评论 -
基于PaddleX的智能零售柜商品识别
在传统的零售柜中,实现自动识别的方法主要有:硬件分隔、根据重量判断、识别顾客的行为、射频识别标记等。本文基于深度学习在图像分类领域的优异性能,研究基于PaddleX的智能零售柜商品识别,相比于人工扫商品的条码或者顾客自主机器扫码、以及上述各种自动识别的方式效率更高,本实验借鉴原有项目,在使用PaddleX进行模型训练的过程中,检测模型使用PPYolo或者YOLOv3。骨干网络采用ResNet50,训练较为草率,效果并非那么明显。关键词 图像分类;PaddleX;卷积神经网络;特征学习;图像识别随着我国经济原创 2022-07-03 11:34:07 · 2742 阅读 · 0 评论 -
基于k近邻算法的干豆品种分类
近年来,干豆由于其较高的营养价值和良好的口感越来越受到人们的欢迎。其种类繁多且易于种植,是世界食用作物中产量最高的一种。干豆品种分类对干豆培育方向、产量需求和品质改良具有重要意义。本文以k近邻算法为核心,借助图像处理技术对已有13611粒干豆图像数据集进行了特征提取,共有16个特征,并在颗粒种获得了12个尺寸和4种形状形式;然后利用KNN分类模型通过10折交叉验证创建性能指标,得到总体正确分类率为xxx。关键词 图像分类;干豆的分类;KNN算法;特征学习豆类与谷类拥有一样悠久地种植历史,且与人类历史发展息原创 2022-07-02 08:50:57 · 4209 阅读 · 0 评论 -
基于YOLOv5的口罩佩戴检测方法
正确的佩戴口罩对现阶段有效减低人员之间感染新型冠状病毒具有重要意义。基于YOLOv5在图像识别检测领域的优异性能,本文研究基于基于YOLOv5的口罩佩自动戴检测方法。首先从网络和真实生活中中寻找并采集不同场景人群口罩佩戴的图片约500张并自建数据集,然后利用YOLOv5模型框架,修改其相关配置文件和检测参数,并采用数据增强和Dropout技术防止过拟合。实验结果验证了YOLOv5模型人群口罩佩戴图像识别任务上的优越性能,测试集上的YOLOv5s模型识别准确率高达85.45%。关键词 图像识别;口罩佩戴检测原创 2022-07-01 08:49:14 · 3503 阅读 · 0 评论 -
安全帽佩戴检测算法研究
安全帽佩戴监控是铁路工程施工人员安全管理中的重点和难点,它对检测算法的准确 率与检测速度都有较高的要求。本文提出一种基于神经网络架构搜索的安全帽佩戴检测算法 NAS-YOLO。该神经网络架构由上、下行操作单元组成,采用二进制门策略对网络架构进行更 新,通过数据驱动的方式自动确定合适的神经网络体系结构。实验结果表明,NAS-YOLO算法 在准确率、召回率及平均检测速度方面均优于实时目标检测算法 YOLOv3,可以在工程施工中 对施工人员安全帽佩戴情况进行实时监控。关键词 安全帽佩戴;神经网络架构搜索;自动检原创 2022-06-30 09:42:46 · 2201 阅读 · 1 评论 -
阿尔兹海默病智能诊断
阿尔茨海默病(Alzheimer′s Disease,AD)是一种以认知和智力损害、行为能力下降为特点的神经退行性疾病,目前其确切病因不明,并缺少有效的治疗方案。阿尔茨海默病是一种起病隐匿的进行性神经系统退行性疾病。以记忆障碍、失语、失用、失认、视空间技能损害、执行功能障碍以及人格和行为改变等全面性痴呆为特征。病因迄今未明。我国现有约1000万痴呆患者,保守估计每年耗费约600亿 美 元。而AD是最常见的痴呆类型,约占全部痴呆患者的50%~70%。AD在全世界范围内患病率也逐渐增加,根据流行病学数据预测,到原创 2022-06-29 08:02:12 · 8896 阅读 · 4 评论 -
猫狗图像数据集上的深度学习模型性能对比
LeNet-5由七层组成(不包括输入层),每一层都包含可训练权重。通过卷积、池化等操作进行特征提取,最后利用全连接实现分类识别,下面是他的网络结构示意图:C:卷积层S:池化层F:全连接层输入为3232像素图片**(一)C1层-卷积层(55)**有6个55的卷积核的卷积层(convolution),输入图片(3232)经过C1卷积层后输出特征图片大小为2828(32-5+1),这样可以防止输入图像的信息掉出卷积核边界。C1包含156个((55+1)6)可训练参数(权重)和122304个((55原创 2022-06-28 07:57:15 · 1017 阅读 · 0 评论 -
基于群智能算法的TSP问题求解
旅行商问题(TravelingSalesmanProblem,TSP)是一个经典的组合优化问题。经典的TSP可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。由于其在交通运输、电路板线路设计以及物流配送等领域内有着广泛的应用,国内原创 2022-06-27 09:20:08 · 1479 阅读 · 1 评论 -
基于启发式搜索的一字棋
“一字棋"游戏(又叫"三子棋"或"井字棋”),是一款十分经典的益智小游戏。“井字棋"的棋盘很简单,是一个 3×3 的格子,很像中国文字中的"井"字,所以得名"井字棋”。"井字棋"游戏的规则与"五子棋"十分类似,"五子棋"的规则是一方首先五子连成一线就胜利;"井字棋"是一方首先三子连成一线就胜利。尽可能的朝着可以让计算机获胜的方向走步。需要采用极大极小搜索算法。“一字棋”游戏(又叫“三子棋”或“井字棋”),是一款十分经典的益智小游戏。“井字棋”的棋盘很简单,是一个 3×3 的格子,很像中国文字中的“井”字原创 2022-06-26 08:58:23 · 3155 阅读 · 0 评论 -
基于深度Q学习的雅达利打砖块游戏博弈
球碰到砖块、棒子与底下以外的三边会反弹,落到底下会失去一颗球,把砖块全部消去就可以破关。始祖是史蒂夫·乔布斯与他的好友沃兹(苹果公司的另一位创始人)于1975年的夏末,花了4天时间设计完成的游戏《乒乓》。同时,美国英宝格公司(en:Atari Games,ja:アタリ (ゲーム))于1976年推出的街机游戏“Breakout”,由该公司在1972年发行的“PONG”(en:PONG,ja:ポン (ゲーム),世界上第一款电子游戏,类似台球)改良而来。相较于其前作,一个人就可以玩与变化丰富这两项特点让Brea原创 2022-06-25 07:36:15 · 1780 阅读 · 0 评论 -
井字棋的Python实现
井字棋,英文名叫Tic-Tac-Toe,是一种在3*3格子上进行的连珠游戏,和五子棋类似,由于棋盘一般不画边框,格线排成井字故得名。游戏需要的工具仅为纸和笔,然后由分别代表O和X的两个游戏者轮流在格子里留下标记(一般来说先手者为X),任意三个标记形成一条直线,则为获胜。游戏的难点在于,如何判断连接成了一条线;横、竖、斜三个方向;代码如下:# 创建井字棋的程序def initBoard(): global board # 调用全局的board board = [None] * 3 print("原创 2022-05-21 10:53:24 · 2924 阅读 · 5 评论 -
在基本网格世界中训练强化学习代理
此网格世界环境具有以下配置和规则:一个由边界界定的5 x 5网格世界,有4种可能的动作(北= 1,南= 2,东= 3,西= 4)。代理从单元格[2,1](第二行,第一列)开始。如果代理人到达单元格[5,5]的最终状态(蓝色),则代理商会获得+10的奖励。该环境包含从单元格[2,4]到单元格[4,4]的特殊跳转,奖励为+5。代理被障碍物(黑格)阻塞。所有其他动作都会导致-1奖励。1.创建网格世界环境创建基本的网格世界环境。env = rlPredefinedEnv("BasicGridWo原创 2022-05-20 10:32:15 · 1014 阅读 · 0 评论 -
使用周期一致的对抗网络进行不成对的图像到图像转换
图 1:给定任意两个无序图像集合 X 和 Y,我们的算法学习自动将图像从一个图像“翻译”到另一个图像,反之亦然,示例应用程序(底部):使用著名艺术家的画作集,学习将用户的照片渲染成他们的风格。摘要图像到图像转换是一类视觉和图形问题,其目标是学习之间的映射输入图像和输出图像使用训练集对齐的图像对。但是,对于许多任务,配对的训练数据将不可用。我们提出了一种方法学习将图像从源域 X 转换为目标域 Y 在没有配对示例的情况下。我们的目标是学习映射 G : X → Y 使得分布来自 G(X) 的图像与使用对抗性.原创 2022-05-19 12:47:39 · 868 阅读 · 0 评论 -
2022年模式识别高峰论坛学习笔记
1. 模式识别所谓模式识别的问题就是用计算的方法根据样本的特征将样本划分到一定的类别中去。模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读,把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程,其过程的一个重要形式是生命体对环境及客体的识别。模式识别以图像处理与计算机视觉、语音语言信息处理、脑网络组、类脑智能等为主要研究方向,研究人类模式识别的机理以及有效的计算方法。2. 研究方向模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为原创 2022-05-18 18:55:44 · 499 阅读 · 0 评论 -
基于U-Net的图像分割
1. U-Net介绍1.1基本框架U-net包括两部分:第一部分,特征提取(convolution layers),与VGG、Inception、Res-Net等类似。第二部分上采样部分(upsamping layers)。convolutions layers中每个pooling layer前一刻的activation值会concatenate到对应的upsamping层的activation值中。由于网络结构像U型,所以叫U-Net网络。特征提取部分(convolution layers),每经过原创 2022-05-17 23:10:02 · 1575 阅读 · 0 评论 -
一个通用的目标检测框架
摘要本文提出了一个通用的可训练框架用于杂乱场景的静态图像中的对象检测。我们开发的检测技术是基于派生的对象类的小波表示类实例的统计分析。通过学习以超完备子集表示的对象类字典的小波基函数,我们得出一个对象类的紧凑表示,它被用作支持向量机分类器的输入。这表现法克服了课堂上的问题可变性并在以下方面提供较低的错误检测率不受约束的环境。我们在两个固有信息内容显著不同的领域中演示了该技术的能力。第一个系统是人脸检测,第二个系统是人的领域,与人脸相比,它在颜色、纹理和模式上差异很大。与以前的方法不同,该系统从例子中学习原创 2022-05-17 19:00:01 · 877 阅读 · 2 评论 -
火灾探测和监测系统的最新进展回顾
摘 要森林大火是影响最大的自然灾害之一,导致了人类和环境的巨大破坏。由于传感器和技术的快速发展,以及计算机视觉算法的成功,新的和完整的自动火灾监测和检测解决方案已被曝光。然而,在过去的几年里,只有少数的文献综述被提出来含盖了直到2015年的研究。为了填补这一空白,我们在本文中对这一问题进行了最新的全面回顾。首先,我们介绍了这些系统的一般描述和在可靠性、灵活性和效率方面的比较分析。然后,我们介绍了基于视觉的火灾检测方法,我们主要分注的是基于深度卷积神经网络(CNN)的技术。关键词 火灾检测;火灾监控;基于原创 2022-05-17 13:12:25 · 3714 阅读 · 1 评论 -
一种可训练的目标检测系统
麻省理工学院,人工智能实验室,生物与计算学习中心,美国马萨诸塞州剑桥摘要本文提出了一种通用的、可训练的、在无约束的、杂乱的场景中的目标检测系统。该系统的功能很大程度上来自于一种表示,该表示用一个过完整的、面向的、多尺度强度差异的字典来描述一个对象类 区域,可有效地计算作为一个哈尔小波变换。这种基于示例的学习方法通过使用大量的正、负的示例来训练一个支持向量机分类器,从而隐式地推导出一个对象类的模型。我们使用相同的架构来展示关于人脸、人和汽车检测任务的结果。此外,我们通过考虑几个替代方案来量化表示法如何影响原创 2022-05-16 20:23:46 · 671 阅读 · 0 评论 -
Object Detection in 20 Years: A Survey 20年间的目标检测:综述
摘要物体检测作为计算机视觉中最基本和最具挑战性的问题之一,近年来受到了极大的关注。它在过去二十年中的发展可以看作是计算机视觉历史的缩影。如果我们把今天的物体探测看成是深度学习力量下的技术美学,那么把时钟拨回到20年前,我们就见证了冷武器时代的智慧。本文根据其技术演变(从1990年代到2019年)广泛回顾了400多篇关于物体检测的论文。本文涵盖了许多主题,包括历史上的里程碑探测器,检测数据集,指标,检测系统的基本构建块,加速技术以及最近的最先进的检测方法。本文还综述了行人检测、人脸检测、文本检测等一些重要的原创 2022-05-16 12:22:01 · 6044 阅读 · 0 评论 -
基于CycleGAN的图像季节转换
(1) 季节转换图像数据集简介下载地址: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/, 或者 https://www.kaggle.com/datasets/balraj98/summer2winter-yosemite注意:Kaggle中提供了一些代码案例,keras官网也提供了代码案例,可供参考。(2) CycleGAN模型简介Cycle-GAN是一个2017年推出的直击产业痛点的模型。众所周知,在一系列视原创 2022-05-16 12:05:16 · 2031 阅读 · 0 评论 -
图像分类方法总结
1. 图像分类问题描述图像分类问题是计算机视觉领域的基础问题,它的目的是根据图像的语义信息将不同类别图像区分开来,实现最小的分类误差。具体任务要求是从给定的分类集合中给图像分配一个标签的任务。总体来说,对于单标签的图像分类问题,它可以分为跨物种语义级别的图像分类,子类细粒度图像分类,以及实例级图像分类三大类别。因为VOC数据集是不同物种类别的数据集,所以本文主要研究讨论跨物种语义级别的图像分类任务。通常图像分类任务存在以下技术难点:(1)视角变化:同一个物体,摄像机可以从多个角度来展现。(2)大小变原创 2022-05-15 10:29:07 · 21860 阅读 · 0 评论 -
基于U-Net模型的视网膜血管分割
(1) 视网膜血管图像数据集DRIVE简介DRIVE (Digital Retinal Images for Vessel Extraction)数据集是用于视网膜病变研究的数据集,相关图像均来自于荷兰的糖尿病视网膜病变筛查计划,其被用于视网膜图像中的血管分割比较研究。该数据集由图像科学研究所于 2004 年发布。DRIVE数据库已经建立,可以对视网膜图像中的血管分割进行比较研究。视网膜血管分割和描绘视网膜血管的形态属性,如长度、宽度、弯曲度、分支模式和角度,用于诊断、筛查、治疗和评估各种心血管和眼科疾原创 2022-05-14 19:03:23 · 8348 阅读 · 2 评论 -
《走进人工智能》学习笔记
1. 走进人工智能人工智能是研究如何将人类自身所具有的感知、认知、行动、控制和决策等能力通过机器来实现的一门学问,但它也可以是一个赋能系统、一个开源代码平台、一门初高中课程、一个大学本科专业、一种思维方式、甚至是我们每个人每天所生活的“智能社会”空间。人工智能本身还处于不断发展和进步的过程中,我们要警惕将人工智能等同于人类大脑的不切实际之举和“人工智能超越人类”的杞人忧天之扰,要认识到目前人工智能还处于完成特定任务的“就事论事”阶段,迈向通用人工智能是人类今后面临的长期而艰巨的任务。2. 从机器人偶到图原创 2022-05-14 18:59:38 · 1375 阅读 · 0 评论 -
机器学习之道学习笔记
1. 机器学习简介机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。机器学习有下面几种定义:(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。(2)机器学习是对能通过经验自动改进的计算机算法的研究。(3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。2. 基本思想K 折交叉验证:将数据原创 2022-05-13 11:03:14 · 390 阅读 · 0 评论 -
机器学习在新冠大数据分析中的应用学习笔记
1. 机器学习与数据分析“数据挖掘”和"数据分析”通常被相提并论,并在许多场合被认为是可以相互替代的术语。关于数据挖掘,已有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的.新颖的、潜在有用的最终可理解的模式的非平凡过程”,无论是数据分析还是数据挖掘,都是帮助人们收集、分析数据,使之成为信息,并做出判断,因此可以将这两项合称为数据分析与挖掘。数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器原创 2022-05-13 11:05:12 · 1748 阅读 · 0 评论