03-树1 树的同构 (25分)

题目

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

在这里插入图片描述

现给定两棵树,请你判断它们是否是同构的。

输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数NN (\le 10≤10),即该树的结点数(此时假设结点从0到N-1N−1编号);随后NN行,第ii行对应编号第ii个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No

思路一

判断是否同构只需要判断每个结点的孩子的字母有没有发生改变。
从T1的第一个结点开始,在T2中找到对应的字母,得到位置(序号),判断两个结点的孩子是否有差异。

#include<iostream>
#define MaxSize 10
#define ElementType char

using namespace std;

struct TreeNode{
    ElementType	ch;
    int lchild;
    int rchild;
};

int BuildTree(TreeNode T[]){
	int n;
	char temp;
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>T[i].ch;
		cin>>temp;
		if(temp=='-') T[i].lchild = -1; 
		else T[i].lchild = temp - '0'; 
		cin>>temp;
		if(temp=='-') T[i].rchild = -1; 
		else T[i].rchild = temp - '0';
	}
	return n; //返回长度 
}

int check(TreeNode T1[],TreeNode T2[],int a,int b){
	if (a!=b) {
	    cout<<"No";
		return 0;}
	for(int p=0;p<a;p++){
		int tag = 0;
		for(int q=0;q<b;q++){	
		if(T1[p].ch == T2[q].ch){
			tag = 1;//找到了 
			if(	T1[p].lchild!=-1 &&T1[p].rchild!=-1&&T2[p].lchild!=-1&&T2[p].rchild!=-1){
			//cout<<"//T1,T2左右子树均存在"<<endl; 
				if(T1[T1[p].lchild].ch==T2[T2[q].lchild].ch&&T1[T1[p].rchild].ch==T2[T2[q].rchild].ch
				||T1[T1[p].rchild].ch==T2[T2[q].lchild].ch&&T1[T1[p].lchild].ch==T2[T2[q].rchild].ch)
				break;
				else {
					cout<<"No";				
					return 0;
				}
			}

			else if(T1[p].lchild==-1 &&T1[p].rchild!=-1){
			//cout<<"//T1左子树不存在,右子树存在"<<endl; 
				if(T2[q].lchild==-1 &&T2[q].rchild!=-1&&T1[T1[p].rchild].ch==T2[T2[q].rchild].ch
				||T2[q].lchild!=-1 &&T2[q].rchild==-1&&T1[T1[p].rchild].ch==T2[T2[q].lchild].ch)
				break;
				else{
					cout<<"No";
					return 0;
				} 
			}
			
			else if(T1[p].lchild!=-1 &&T1[p].rchild==-1){
			//cout<<"//T1左子树存在,右子树不存在"<<endl;
				if(T2[q].lchild!=-1 &&T2[q].rchild==-1&&T1[T1[p].lchild].ch==T2[T2[q].lchild].ch
				||T2[q].lchild==-1 &&T2[q].rchild!=-1&&T1[T1[p].lchild].ch==T2[T2[q].rchild].ch)
				break;
				
				else{
					cout<<"No";
					return 0;
				} 
		    }
			
			else if(T1[p].lchild==-1 &&T1[p].rchild==-1 ){
			//cout<<"//T1左右子树均不存在"<<endl;
				if(T2[q].lchild==-1 &&T2[q].rchild==-1 ) break;
				else{
					cout<<"No";
					return 0;
				}
			} 
			
		}	
		}
		if(tag == 0) {
			cout<<"No";
			return 0;
		} //遍历了T2都找不到 
	}
	cout<<"Yes"; 
	return 1;
}

int main(){
	TreeNode T1[MaxSize],T2[MaxSize];
	int a = BuildTree(T1);//T1的长度
	int b = BuildTree(T2);//T2的长度
	check(T1,T2,a,b);
	return 0;
}

注意的点:
只能写 T1[MaxSize],T2[MaxSize],在申明变量时不能写int n,TreeNode T1[n],T2[n],C++并不支持这个。
传数组给函数的时候,下面这种写法报错了。

	int a = BuildTree(T1[]);
	int b = BuildTree(T2[]);

下面这样写又是正确的。

	int a = BuildTree(T1);
	int b = BuildTree(T2);

写函数,传数组的时候,中括号也不能去掉。

int check(TreeNode T1[],TreeNode T2[],int a,int b){}
int BuildTree(TreeNode T[]){}

按理来说都是首地址,没啥区别呀。总之编译器太蠢。
如果想返回数组,返回类型改为TreeNode* 没毛病。

思路二

上面方法需要对T1的每个字符都在T2里面遍历,才能找到,对应的复杂度是n2。MOOC里面何老师讲的方法是:在建造树的时候就找到了它的根结点,并且返回它的位置,然后用递归的方法判断左右子树是否同构。感觉复杂度近似于n。

#include<iostream>
#define Tree int
#define MaxSize 10
#define ElementType char
#define Null -1

using namespace std;

//定义树结构
struct TreeNode{
	ElementType Element;
	Tree Left;
	Tree Right;
}T1[MaxSize], T2[MaxSize];

//输入数据并返回该数根节点的位置
Tree BuildTree(struct TreeNode T[]) {
	int n, check[MaxSize]={0}, i, root = Null;
	char tempLeft, tempRight;
	cin>>n;
	if (n) {
		for (i = 0; i < n; i++) {
			scanf("%c %c %c", &T[i].Element, &tempLeft, &tempRight);
			if (tempLeft != '-') {
				T[i].Left = tempLeft - '0';
				check[T[i].Left] = 1;//有孩子结点-->有指针指向它-->肯定不是根结点 
			}
			else T[i].Left = Null;
			if (tempRight != '-') {
				T[i].Right = tempRight - '0';
				check[T[i].Right] = 1;
			}
			else T[i].Right = Null;
		}
		for (i = 0; i < n; i++) if (check[i] == 0) break;
		root = i;
	}
	return root;
}

int Isomorphic(Tree R1, Tree R2) {
	int A, B;
	//两树为空树,则为同构
	if ((R1 == Null) && (R2 == Null)) return 1;
	//一个树为空,另一个不为空,则不同构
	else if (((R1 == Null) && (R2 != Null)) || ((R1 != Null) && (R2 == Null))) return 0;
	//两树根结点存在但数据不同,则不同构
	else if (T1[R1].Element != T2[R2].Element) return 0;
	//下面判断有子树的复杂情况 
	else {
		//两树左子树均为空树,则判断两树右子树是否同构
		if ((T1[R1].Left == Null) && (T2[R2].Left == Null)) return Isomorphic(T1[R1].Right, T2[R2].Right);
	    //两树左子树不为空,且两树左子树数据相等,则判断两树左子树和右子树是否同时同构
	    if (((T1[R1].Left != Null) && (T2[R2].Left != Null)) && (T1[T1[R1].Left].Element == T2[T2[R2].Left].Element)) return ((A = Isomorphic(T1[R1].Left, T2[R2].Left)) && (B = Isomorphic(T1[R1].Right, T2[R2].Right)));
	    //两个左子树不为空,但两左子树数据不相等。
		//或者。一个左子树空,一个左子树不空。
		//这都需要交换判断子树是否同构
	    else return ((A = Isomorphic(T1[R1].Left, T2[R2].Right)) && (B = Isomorphic(T1[R1].Right, T2[R2].Left)));
	}
}

int main(void) {
	Tree R1, R2;
	R1 = BuildTree(T1);
	R2 = BuildTree(T2);
	if (Isomorphic(R1, R2)) printf("Yes\n");
	else printf("No\n");
	return 0;
}

注意的点:
比较妙的地方是递归。return 1代表同构,return 0 代表不同构,这里很好地利用了逻辑与。

return Isomorphic(T1[R1].Right, T2[R2].Right);//左子树为0时,判断右子树是否同时同构
return ((A = Isomorphic(T1[R1].Left, T2[R2].Left)) && (B = Isomorphic(T1[R1].Right, T2[R2].Right)));//利用到了&&,判断左右子树是否同时同构
return...//也用到了&&,看左子树是否跟右子树同构,右子树是否跟左子树同构

break后,全身退出循环,不会再i++。
下面例子输出结果为3。

	int i;
	for(i=0;i<7;i++){
		if (i=3) break;
	}
	cout<<i;
发布了4 篇原创文章 · 获赞 0 · 访问量 108
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览