城市公交网建设问题(最小生成树问题)

题目描述如下:
有一张城市地图,图中的顶点为城市,编号为 1∼n,无向边 代表两个城市间的连通关系,边上的权值为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任何一对城市都是连通的。
现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少?
输入格式:
第一行包含两个整数 n 和 e,分别表示城市个数和无向边个数。
接下来 e 行,每行包含三个整数 i,j,w,表示在城市 i 和城市 j 之间修建公路的造价为 w。
城市编号从 1 开始。
输出格式
共 n−1 行,每行为两个城市的编号,表明在这两个城市间建一条高速公路。
本题答案不一定唯一,输出任意一种最优方案即可,方案中边和点的顺序可以任意选择。
数据范围
1≤n≤100,
1≤e≤1000,
1≤w≤10000
数据保证不含重边和自环。
输入样例:

5 8
1 2 2
2 5 9
5 4 7
4 1 10
1 3 12
4 3 6
5 3 3
2 3 8

输出样例:

1 2
2 3
3 4
3 5

问题分析如下:
该问题是一个典型的用最小生成树求解的题目,可使用Kruskal算法求解。
注意:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值