人体姿态识别

文章介绍了基于深度学习的三维人体姿态识别技术,通过OpenPose实现2D人体姿态检测,VideoPose3D转换为3D骨架信息,再用Blender进行3D渲染,将真实人体运动映射到虚拟现实中,展示了姿态识别在游戏、交互和制造领域的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

姿态识别简介

姿态识别是人工智能领域重要的研究课题。人体姿态识别赋予计算机具有感知状态的能力,将姿识别和 VR应用相结合,在游戏娱乐、人机交互 和生产制造等领域具有广阔的市场前景。本文基于深度学习,实现将三维空间人体姿态识别和 VR进行结合。主要工作如下 ,首先 基于 Bottom-Up思想,采用 OpenPose模块实现二维空间中的人体姿态识别,克服 了 Top-Down思想引起的识别效果差和计算效率低问题,并提取 2D人体骨架信息保存为JSON文件。 然后使用 VideoPose3D模块将 模块将 2D人体骨架信息转化为人体骨架信息转化为 3D人体骨架信息,从而实现三 维空间中的姿态识别,并保存 3D人体骨架信息为 人体骨架信息为 BVH文件。再基于 Blender软件 实现进行 3D渲染,从而实现真实人运动到虚拟人运动的映射。

姿态识别主流研究方法

研究姿态识别的历史,起始点可以追溯到上个世纪中期。当前,姿态识别研究已经发展出了两种主要方法基于RGB图像的人体姿态识别和基于人体骨骼关节点的姿态识别,两者的本质都是一个分类问题,它们都可以提供准确的结果。随着姿态识别技术的不断发展,在数据量和识别的精确度等方面,后者都优于前者

OpenPose网络结构如下(此图为CVPR顶会文章原图,该文章链接附在本文末尾):

实现流程图如下:

整体实现效果如下:

 

 

 

最终效果展示 — — 视频

 

 所参考论文如下,详细论文可自己搜索查看,论文非常经典,真的值得一读。

  [1]CAO Z,SIMON T,WEI S E,et al.Realtime multi-person 2D pose estimation using part affinity fields[C].IEEE Conference on Computer Vision and Pattern Recognition,Washington, USA: IEEE,2019: 1303-1310.

[2] Wei S, Ramakrishna V, Kanade T, et al. Convolutional pose machines[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. United states: IEEE Computer Society, 2016:4724-4732.
[3] Pavllo D, Feichtenhofer C, Grangier D, et al. 3d human pose estimation in video with temporal convolutions and semi-supervised training[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 7753-7762.

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值