欧氏距离和标准化欧氏距离

1. 欧氏距离:类似于数学中求两个点之间的距离。

  •  二维平面上点a(x_1,y_1)与b(x_2,y_2)间的欧式距离:

d_{12} = \sqrt{(x_1 - x_2)^2+(y_1 - y_2)^2}

  • 三维平面上点a(x_1,y_1,z_1)与b(x_2,y_2,z_2)间的欧式距离:

d_{12} = \sqrt{(x_1 - x_2)^2+(y_1 - y_2)^2+(z_1 - z_2)^2}

  • n维平面上点a(x_{11},x_{12},...,x_{1n})与b(x_{21},x_{22},...,x_{2n})间的欧式距离(两个n维向量):

d_{12} = \sqrt{\sum_{k=1}^{n} (x_{1k}-x_{2k})^2}

2.标准化欧氏距离

  标准化欧氏距离是对欧氏距离缺点的一种改进。
  思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。假设样本集X的均值为m,标准差为s,X的“标准化变量”表示为:
“标准化变量”表示为:

X^*=\frac{X-m}{s}

标准化欧氏距离公式:

d_{12}=\sqrt{\sum_{k=1}^{n}(\frac{x_{1k}-x_{2k}}{s_k} )^2 }

  如果将方差的倒数看成一个权重,也可称之为加权欧氏距离。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值