一些小细节代码笔记汇总

Python

opencv中cv2.waitKey(1) & 0xFF的作用

import cv2
import datetime, os

savePath = "E:/Image/"

if not os.path.exists(savePath):
    os.makedirs(savePath)

cap = cv2.VideoCapture(0)
capture = False

if not cap.isOpened():
    print("无法打开摄像头")
    exit()

while True:
    ret, frame = cap.read()
    
    if not ret:
        print("无法接收帧 (stream end?). Exiting ...")
        break

    cv2.imshow('Image', frame)
    current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    if capture:
        cv2.imwrite(os.path.join(savePath, current_time + ".jpg"), frame)
    
    key = cv2.waitKey(1) & 0xFF
    # 按下'q'键退出循环
    if key == ord('q'):
        break
    elif key == ord('s'):
        print("开始抓取图片")
        capture = True

cap.release()
cv2.destroyAllWindows()

cv2.waitKey(1) & 0xFF的作用是:

  • cv2.waitKey(1):等待1毫秒,检查是否有键盘输入。如果有输入,则返回按键的ASCII码值;如果没有输入,则返回-1。
  • & 0xFF:通过按位与操作,将返回值的高位清零,只保留低8位。这是因为在某些系统上,cv2.waitKey可能返回一个大于8位的整数,而我们只关心低8位的ASCII码值。

这样做的目的是确保代码在不同平台上都能正确处理键盘输入。例如,在Windows和Linux系统上,cv2.waitKey的返回值可能有所不同,通过& 0xFF可以统一处理这些差异。

cv2.imshow和plt.imshow的区别

同样一张灰度图,plt.imshow显示的图片和cv2.imshow显示的图片不一致,这是因为cv2.imshowplt.imshow在处理图像显示时的默认行为有所不同。

# matplotlib绘制
plt.imshow(image, "gray")
plt.show()

# cv2绘制
cv2.imshow("img", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

从下面图看matplotlib绘制的要比cv2绘制的对比度更强、更亮

在这里插入图片描述
matplotlib绘制cv2绘制
  • cv2.imshow和plt.imshow的区别:

1. 颜色空间:

  • cv2.imshow 使用的是 BGR 颜色空间,而 plt.imshow 使用的是 RGB 颜色空间。如果在使用 plt.imshow 时没有指定颜色空间,它会假设输入图像是 RGB 的。
  • 对于灰度图像,这个差异不明显,但在彩色图像中会导致颜色显示不正确。

2. 图像归一化:

  • plt.imshow 在显示灰度图像时,会自动对图像进行归一化处理,即将图像的像素值缩放到 [0, 1] 范围内。

  • cv2.imshow 则不会进行这种归一化处理,它直接显示图像的原始像素值。

3. 显示范围:

  • plt.imshow 默认会将灰度图像的像素值映射到 [0, 1] 范围内,这样可以增强对比度,使得图像看起来更亮。

  • cv2.imshow 则直接使用图像的原始像素值进行显示,如果图像的像素值范围较小,显示出来的图像可能会显得较暗。

为了让两者显示效果一致,可以在使用plt.imshow时关闭自动归一化功能,或者手动对图像进行归一化处理后拉伸到0-255再使用cv2.imshow进行图像显示。例如:

import cv2
import matplotlib.pyplot as plt

# 假设 image是灰度图像
# 拉升像素值到0-255
min_val = np.min(image)
max_val = np.max(image)
stretched_image = 255 * ((tempImg - min_val) / (max_val - min_val))
stretched_image = stretched_image.astype(np.uint8)

# 使用 cv2.imshow 显示
cv2.imshow("img", stretched_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 使用 plt.imshow 显示
plt.imshow(image, cmap='gray', vmin=0, vmax=255)
plt.show()

Jupyter中批量释放当前网页的变量

import sys
import gc

# 获取当前命名空间中的所有变量
variables = {name: value for name, value in globals().items() if not name.startswith('_') and not callable(value)}

# 按照内存大小由大到小排序
sorted_variables = sorted(variables.items(), key=lambda item: sys.getsizeof(item[1]), reverse=True)

# 打印每个变量的内存大小
for name, value in sorted_variables:
    print(f"{name}: {sys.getsizeof(value)} bytes")
    if sys.getsizeof(value) > 1000:
        # 释放变量
        del globals()[name]
        print(f"{name}:已释放")

# 强制进行垃圾回收
gc.collect()

plt.imshow针对负数部分单独可视化为黄色

在使用 matplotlib 的 plt.imshow() 函数显示图像时,如果你希望将所有负数值统一显示为黄色,可以通过自定义颜色映射(colormap)来实现。具体来说,你可以创建一个颜色映射,并指定负数对应的区域为黄色。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

# 假设 img 是你的图像数据
img = np.random.randn(10, 10)  # 生成一个随机的 10x10 图像,包含正数和负数

# 创建一个颜色映射
cmap = plt.cm.viridis  # 使用默认的 viridis 颜色映射
cmap.set_under('yellow')  # 将负数部分设置为黄色

# 显示图像
plt.imshow(img, cmap=cmap, vmin=0)  # vmin=0 表示将小于 0 的值视为“under”
plt.colorbar()  # 显示颜色条
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值