随着多模态生成模型的发展,音乐不再只是音频编辑软件里的专属表达。ACE-Step 模型为项目创作引入了一种便捷且风格化的音乐生成方式,让旋律成为开发环节的一部分。
一、模型简介与生成流程
ACE-Step 是由阶跃星辰联合 ACE Studio 推出的开源音乐生成大模型,能够通过“歌词+提示词+结构标签”自动生成旋律与伴奏。其功能覆盖旋律生成、节奏控制、情绪匹配等多个关键维度,生成效率高,适用于无音乐制作背景的开发场景。
该模型现已集成至模力方舟平台,无需部署环境即可在线调用:AI 模型广场 - 模力方舟(Gitee AI)
使用流程概览:
-
输入歌词(可选):如使用主歌+副歌结构,或选择纯音乐形式:
[verse]
在夜色的街头 我轻轻走过
有个声音 在心底唱着歌
[chorus]
心中的 Gaytee 在跳动
就像代码与我共舞着节奏
-
关键词提示:如
funk, pop, melodic, soul
,代表节奏类型、旋律色彩与风格倾向。 -
时长配置:最长支持生成 4 分钟,适配多类内容场景。
-
一键生成:系统将输出 MP3 音频,支持在线试听与下载。
二、实际应用场景分析
短内容项目中的旋律构建
ACE-Step 在短视频、网页展示、小程序原型中展现了良好的应用灵活性。对于 TikTok、B站等平台内容,可以快速生成15~60秒风格契合的 BGM,减少版权采购成本,同时匹配剪辑节奏与视觉氛围。
在交互原型、技术演示或宣传页中,也可使用“ambient + electronic + soft drums”类关键词生成轻量旋律,用于增加界面层级感与沉浸感。例如,教育类展示页可用 lo-fi 音乐渲染阅读节奏;科技产品页适合使用 synth-pop 或 cinematic 风格增强未来感。
虚拟角色与数字人项目配音增强
数字人、虚拟主持人等 AI 驱动角色正逐渐进入用户界面设计与交互设计之中。ACE-Step 可根据角色设定自动生成个性化配乐,用作登场音效或互动背景曲,提高角色辨识度和沉浸体验。
通过关键词与情绪提示,如“mysterious, chill, jazz”,即使无音乐团队,也能快速为角色创建音乐标签,提升整体设计一致性。
教育场景中的风格训练与实验性创作
在高校音乐教学、AI作曲课程或中小学音乐认知训练中,ACE-Step 可用于“听辨实验”与风格模拟演示。通过关键词生成 jazz、blues、edm 等风格作品,辅助学生识别节奏特征、乐器构成与和声形态。
同时,也适用于信息类课程中的“人机共创”实验,让学生尝试基于自然语言描述完成一首原创旋律的“协同创作”。
三、模型对比与功能拓展方向
从功能维度来看,ACE-Step 在“快速使用”和“风格提示自由度”之间找到了平衡点,适合原型验证与工具链嵌入场景。
模型 | 是否支持歌词 | 输出格式 | 风格控制 | 本地部署 | 使用门槛 |
---|---|---|---|---|---|
ACE-Step | ✅ | MP3 | 关键词控制 | ❌(SaaS) | 低(网页使用) |
MusicGen | ✅ | WAV/MIDI | 强(token级) | ✅ | 中(需Colab) |
Riffusion | ❌ | 声谱图图像 | 隐式控制 | ✅ | 中 |
ACE-Step 同时提供以下能力:
-
重生成功能:允许基于同一歌词更换提示词进行风格微调;
-
局部续写:支持对选中旋律段落进行延长补全;
-
结构控制:通过标签区分主歌、副歌、桥段,提高曲式完整性。
未来若进一步支持 MIDI 格式输出与精度化节拍控制,将在项目音乐设计中具备更高可调试性。
欢迎访问 ACE-Step 在线体验页面:
👉 AI 模型广场 - 模力方舟(Gitee AI)
平台同时提供 API 文档与模型资源包,便于将其集成至原型平台、音视频应用或教学工具链中,构建基于生成音乐的轻量创作流程。