深度学习之卷积、池化操作

发现大部分的论文只给出了大致的网络结构,有些细节的参数就会被忽略,比如padding

在yolo的论文中,给出的网络结构如下:

在手动实现的过程中,发现padding参数根本没给,这种情况是要自己手动计算的

针对这篇论文,有输入的三维尺寸,有卷积层的尺寸和卷积核个数以及步长,结合输出的尺寸,可以推算出每一层的padding。

吴恩达的课里讲 最大池化层默认是没有padding的,即padding=0;鲁豫的课里讲的是池化默认都不padding。

此外,卷积的计算默认是向下取整的,底层代码用的是/。

这个论文的网络结构图画错了一小部分,正确的应该是:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值