原题记录
描述
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
输入描述:
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 当N为0时,输入结束,该用例不被处理。
输出描述:
对每个测试用例,在1行里输出最小的公路总长度。
最小生成树是指图论中图的最小生成树,无向图的生成树即没有环,最小即树上的各边权重之和最小。其实就是把一个给定图删除几条边使它变成权重最小的一棵树
例如下图:
- prim算法
算法思想:将顶点集分成两个, 和,初始状态为含有一个起始顶点v0,其他的顶点都在顶点集 中,根据顶点之间边的关系,集合 和集合 之间有边相连
选取 和之间的最小边,图中是1,是顶点v2和v0之间的边,将该边的另一个顶点v2合并到中,变成下图
接下来重复同样的操作,选择两个集合之间最小的边,进行合并(集合内部的边不考虑),直到包含所有的顶点为止。所有被选择的边加起来就是最小生成树的权重(未被选择的边可以删除)
代码实现:
1. 用visit[n]记录访问过和未访问过,0代表集,未访问;1代表集,已访问,已经访问的就不能重复访问了,否则会出现环。即每次选择的边的两个顶点,一个是已访问,一个是未访问。
2. 用side[n][n]记录边的权重,若为-1,则表示无边,注意side[i][j]=side[j][i]
3. 用容器road记录当前两个集合之间的可选择边,对其权重进行排序可以得到最短边
4. 首先初始化visit[n],都为0,然后将visit[0]置为1,即选择顶点0作为出发顶点,然后将顶点0的所有边加入road容器。
5. 开始循环:对road的边进行权重排序,取最小的边判断是否满足条件,若不满足取下一条边;若满足则将在中的那个顶点(假如是i)加入,visit[i]=1。然后将i的边中满足另一端顶点不在中的边,加入road,再将road中所有一端是i,一端在中的边删除。
6. 循环直到所有的顶点都被访问过了为止。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm>
#define MAXN 105
using namespace std;
typedef struct Road{
int start;
int end;
int cost;
};
vector<Road> road;
vector<Road>::iterator it;
int visit[MAXN];
int side[MAXN][MAXN];
void init(int n)
{
memset(visit,0,sizeof(visit));
memset(side,-1,sizeof(side));
}
bool compare(const Road a, const Road b)
{
return a.cost<b.cost;
}
int main()
{
int n,m;
while(scanf("%d",&n)!=EOF)
{
if(n==0)break;
int minlong=0;
m=n*(n-1)/2;
init(n);//visit初始化
for(int i=0;i<m;i++)
{
int v1,v2;
cin>>v1>>v2;
cin>>side[v1][v2];
side[v2][v1]=side[v1][v2];
}
visit[1]=1;//放入第一个初始顶点
int number=1;
for(int i=1;i<=n;i++)//放入初始边
{
if(side[1][i]!=-1)
{
Road temp;
temp.start=1;
temp.end=i;
temp.cost=side[1][i];
road.push_back(temp);
}
}
while(number < n && road.empty()==0)
{
sort(road.begin(),road.end(),compare);//边排序
for(it=road.begin();it!=road.end();it++)
{
if(visit[it->end]==0)//不在同一个集合的顶点,且边为最小
{
//加入集合
visit[it->end]=1;
number++;
minlong+=it->cost;
//将边也加入进来
for(int i=1;i<=n;i++)
{
if(side[it->end][i]!=-1 && visit[i]==0)//将剩余的边加入进来
{
Road temp;
temp.start=it->end;
temp.end=i;
temp.cost=side[it->end][i];
road.push_back(temp);
}
}
break;
}
}
//将集合内部的边删除
int v=it->end;
for(it=road.begin();it!=road.end();it++)
{
if(it->end==v)
{
road.erase(it);
it--;
}
}
}
cout<<minlong<<endl;
}
return 0;
}