伪线性编程

本文重新审视了Mathis和Mathis提出的用于解决非线性医院费用优化问题的算法。通过分析问题结构,揭示了Simplex算法在处理近乎线性问题时的作用。文章介绍了伪线性函数的概念,并将Simplex方法视为一种主动集算法,为该问题提供了一个强大的数学基础。同时,文章提出了一种经过修改的算法,解释了为何该问题比最初看起来要简单,并讨论了算法的收敛性。
摘要由CSDN通过智能技术生成

SIAM REVIEW ⃝c 1999 Society for Industrial and Applied Mathematics Vol. 41, No. 4, pp. 795–805
Pseudolinear Programming∗
Serge Kruk† Henry Wolkowicz†
Abstract. This short note revisits an algorithm previously sketched by Mathis and Mathis [SIAM Rev.,37(1995),pp.230–234]andusedtosolveanonlinearhospitalfeeoptimization problem.AnanalysisoftheproblemstructurerevealshowtheSimplexalgorithm,viewed under the correct light, can be the driving force behind a successful algorithm for an almost linearproblem.Thispresentationisintendedforstudentswhohavebeenexposedtothe Simplex method for linear programming and are progressing, via the Karush–Kuhn–Tucker conditions, toward nonlinear optimization.
Key words. nonlinear programming, Simplex method, pseudoconvexity, fractional programming AMS subject classifications. 90C08, 90C30, 49M37
PII. S0036144598335259

  1. A Seemingly Nonlinear Program. In a past Classroom Notes column [6], Mathis and Mathis introduced an interesting optimization problem. Their model was practical, in this era of tightening budget constraints: it described a facet of hospital revenue used by managers in Texas to help set fees for procedures. Even more interesting, for the theoretically minded, is the fact that a trivial algorithm apparently solved, albeit without a convergence proof, a nonlinear, arguably difficult problem.
    We revisit this problem to give a strong mathematical foundation to a slightly modified algorithm and to explain, along the way, why the problem is much simpler than expected at first glance. To do so, we introduce the concept of pseudolinear functions and view the Simplex method as an active set algorithm. The historically inclined will notice that the results used for this analysis are all 30 years old.
    Mathis and Mathis gave a complete description of the problem, to which we refer the reader [6]. We just repeat the more important points of the model formulation.
    • There are d departments in the hospital.
    • Department i performs pi procedures.
    • Charges are assigned to procedure j in department i by:
    —mij ≥ 0 represents Medicare/Medicaid charges; —oij ≥ 0 represents other charges;
    — cij > 0 represents total charges (cij = mij + oij ).
    • The government-fixed outpatient cost is Ci > 0 for department i.
    • The decision variable rij represents the fraction of increase in the charge for
    procedure j, department i.
    • The charge increase is upper and lower bounded by lij ≤ rij ≤ uij .
    ∗Received by the editors March 6, 1998; accepted for publication (in revised form) May 1, 1999; published electronically October 20, 1999.
    http://www.siam.org/journals/sirev/41-4/33525.html
    †University of Waterloo, Department of Combinatorics and Optimization, Waterloo, ON N2L
    3G1, Canada (sgkruk@acm.org, henry@orion.uwaterloo.ca).
    795
    Downloaded 05/31/20 to 61.148.243.125. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

796 SERGE KRUK AND HENRY WOLKOWICZ
• The overall charge increase is a constant q × 100 percent.
Their model then produces the following maximization problem:
􏰃
d pi 􏰂􏰂
maxF® :=
i=1 j=1
pi
j=1 mij(1+rij)
subject to cijrij = q cij, i=1 j=1 i=1 j=1
oij(1 + rij) + Ci d pi
􏰃pi cij(1 + rij) j=1
d pi
􏰂􏰂 􏰂􏰂
lij ≤ rij ≤ uij. This results in Algorithm 1 for solving the maximization.
Algorithm 1 (Mathis and Mathis [6]).
Set all rij to q and sort the procedure in ascending order of Qij := ( ∂F )( 1 ).
∂ rij cij
while the sort produces a different ordering do
Set all rij to uij.
Beginning with the smallest Qij, assign lij to rij until the solution is nearly feasible. Then adjust the last rij to make it so.
Compute the new Qij and sort.
end while
The algorithm is unexpectedly simple, especially when contrasted to the problem it pretends to solve. But it begs a convergence proof. The authors checked the results against a well-known nonlinear solver to gain confidence in the procedure but stopped short of a proof. Moreover, one characteristic of the algorithm is nagging: looking at the feasible region as the polytope that it is, we see that iterates proceed from vertex to vertex. 􏰃i=d
To observe this behavior, let n be the number of variables (n := i=1 pi) and notice that the program has 1 equality constraint and 2n inequalities. Recall that a vertex is a basic feasible solution and that the algorithm, forcing all variables except one to either their upper or lower bound, will satisfy with equality exactly n − 1 of the inequalities. Adding the single equality constraint, we obtain n constraints in n-space, a vertex.
It should have struck the reader as odd that a continuous nonlinear program would attain its optimal solution at a vertex. Moreover, the algorithm seems never to remain stuck at a local optimum; it finds, according to the authors, the global optimum. “Curiouser and curiouser,” said Alice. Because of these surprises, we will reformulate the problem to highlight the characteristics that explain the algorithm’s behavior.
2. A Somewhat Less Nonlinear Program. How should one attack a problem like the one above? The objective function is nonlinear, which eliminates a blind ap- plication of the well-known Simplex method for linear programming (see [1]). Interior- point methods (see [8]) usually assume convex functions, which does not appear to be the case here. Yet a full-featured nonlinear solver, possibly based on sequential quadratic programming (see [9]), seems to be overkill. In the hope of recognizing spe- cial characteristics of the problem and of simplifying the analysis, we now reformulate and get rid of the noise, a valuable step in any modeling problem. First we let the solution space be Rn := Rp1 ⊕ · · · ⊕ Rpd , where the pi, we recall, indicate the number of procedures per department, to obtain
x􏰄∈Rpi, x􏰄 := [1+rt ,1+rt ,…,1+rt ]t, i i i1 i2 ipi
ntttt
x􏰄 ∈ R , x􏰄 := [x􏰅 , x􏰅 , . . . , x􏰅 ] . 12d
Downloaded 05/31/20 to 61.148.243.125. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PSEUDOLINEAR PROGRAMMING 797
Note that the decision variable is now nonnegative. We will use x􏰄 to refer to the whole vector, x􏰄 to refer to the subvector corresponding to department i, and x to
ii
refer to a component of x􏰄, according to the property of the solution that we wish to highlight. We make corresponding substitu

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值