爬楼梯_fib

文章讨论了一个经典的算法问题——爬楼梯,其中提到当需要爬n阶楼梯时,可以每次爬1或2阶。原问题使用递归解决导致在n=45时超时。解决方案是改用数组存储斐波那契数列,将时间复杂度降低至O(n),避免了递归带来的效率问题。
摘要由CSDN通过智能技术生成

爬楼梯

题目描述

leetcode_hot100_70
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶

示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

提示:
1 <= n <= 45

思路:其实该问题是典型的斐波那契数列
例如
爬3阶时可分解为爬1次+爬2阶问题;爬2次+爬1阶问题
爬4阶时可分解为爬1次+爬3阶问题;爬2次+爬2阶问题
.
.
.
爬n阶时可分解为爬1次+爬n-1阶问题;爬2次+爬n-2阶问题

错误示范
直接递归处理了,到n=45时超时了。

class Solution {
public:
    int fib(int n){
        if(n==1){
            return 1;
        }
        else if(n==2){
            return 2;
        }else{
            return fib(n-1)+fib(n-2);
        }
    }

    int climbStairs(int n) {
        return fib(n);
    }
};

正解

思路:直接变成数组,时间复杂度O(n)

class Solution {
public:
    int climbStairs(int n) {
        int fs[46];
        fs[0]=0;
        fs[1]=1;
        fs[2]=2;
        for(int i=3;i<46;i++){
            fs[i]=fs[i-1]+fs[i-2];
        }
        return fs[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值