题目描述
leetcode_hot100_70
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶
提示:
1 <= n <= 45
思路:其实该问题是典型的斐波那契数列
例如
爬3阶时可分解为爬1次+爬2阶问题;爬2次+爬1阶问题
爬4阶时可分解为爬1次+爬3阶问题;爬2次+爬2阶问题
.
.
.
爬n阶时可分解为爬1次+爬n-1阶问题;爬2次+爬n-2阶问题
错误示范
直接递归处理了,到n=45时超时了。
class Solution {
public:
int fib(int n){
if(n==1){
return 1;
}
else if(n==2){
return 2;
}else{
return fib(n-1)+fib(n-2);
}
}
int climbStairs(int n) {
return fib(n);
}
};
正解
思路:直接变成数组,时间复杂度O(n)
class Solution {
public:
int climbStairs(int n) {
int fs[46];
fs[0]=0;
fs[1]=1;
fs[2]=2;
for(int i=3;i<46;i++){
fs[i]=fs[i-1]+fs[i-2];
}
return fs[n];
}
};