扩展欧几里得算法-C语言

扩展欧几里得算法


算法原理

扩展欧几里得算法是用来求解形如 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 的一次不定方程的方法,其中 a , b a,b a,b 是两个整数, gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) 是它们的最大公约数。扩展欧几里得算法可以通过辗转相除的方式来求解 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b),同时还可以计算出 x , y x,y x,y,使得方程 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 成立。

其核心思想是使用递归地进行辗转相除来求解 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b),同时在递归的过程中,维护两个变量 x , y x,y x,y,满足 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)。具体来说,假设 a ≥ b a\geq b ab,我们可以通过以下步骤来计算 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) x , y x,y x,y

  • 如果 b = 0 b=0 b=0,则 gcd ⁡ ( a , b ) = a \gcd(a,b)=a gcd(a,b)=a x = 1 x=1 x=1 y = 0 y=0 y=0
    否则,我们递归地计算 gcd ⁡ ( b , a   m o d   b ) \gcd(b,a \bmod b) gcd(b,amodb),并假设其结果为 gcd ⁡ ( b , a   m o d   b ) = d \gcd(b,a \bmod b)=d gcd(b,amodb)=d x ′ = y x'=y x=y y ′ = x − ⌊ a / b ⌋ y y'=x-\lfloor a/b\rfloor y y=xa/by,其中 ⌊ a / b ⌋ \lfloor a/b\rfloor a/b 表示 a / b a/b a/b 的整数部分。则 gcd ⁡ ( a , b ) = d \gcd(a,b)=d gcd(a,b)=d x = x ′ x=x' x=x y = y ′ y=y' y=y
  • 最后,扩展欧几里得算法将会返回 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) x , y x,y x,y,使得 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 成立。

代码实现

#include <stdio.h>

void extended_euclidean_algorithm(int a, int b, int* x, int* y, int* gcd) {
    int x1 = 0, y1 = 1, x2 = 1, y2 = 0, temp_x, temp_y, temp_gcd;
    while (b != 0) {
        int quotient = a / b;
        int remainder = a % b;
        a = b;
        b = remainder;
        temp_x = x2 - quotient * x1;
        x2 = x1;
        x1 = temp_x;
        temp_y = y2 - quotient * y1;
        y2 = y1;
        y1 = temp_y;
    }
    *x = x2;
    *y = y2;
    *gcd = a;
}

int main() {
    int a = 45;
    int b = 15;
    int x, y, gcd;
    extended_euclidean_algorithm(a, b, &x, &y, &gcd);
    printf("The GCD of %d and %d is %d\n", a, b, gcd);
    printf("The coefficients of Bezout's identity are %d and %d\n", x, y);
    return 0;
}

运行结果

运行结果




每一个不曾起舞的日子,都是对生命的辜负。
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
扩展欧几里得算法解一元一次不定方程 ax + by = gcd(a,b) 的一种方法,其中 a 和 b 是整数,gcd(a,b) 是它们的最大公约数,x 和 y 是整数解。逆元是指在模运算下,一个数的乘法逆元是指与它相乘后模运算得到 1 的数。在数论中,常常需要一个数在模意义下的逆元,即一个数 k 满足 (k * x) % m = 1,其中 m 是模数。 下面是扩展欧几里得算法逆元的 C 语言实现: ```c #include <stdio.h> // 扩展欧几里得算法 int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } // 逆元 int modinv(int a, int m) { int x, y; int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { return -1; // a 和 m 不互质,不存在逆元 } else { return (x % m + m) % m; // 转化为正整数 } } int main() { int a = 3, m = 11; int inv = modinv(a, m); if (inv == -1) { printf("%d 在模 %d 意义下不存在逆元\n", a, m); } else { printf("%d 在模 %d 意义下的逆元是 %d\n", a, m, inv); } return 0; } ``` 这个程序中,exgcd 函数通过递归实现扩展欧几里得算法,返回 a 和 b 的最大公约数,并且出 x 和 y 的值。在 modinv 函数中,我们调用 exgcd 函数出 a 和 m 的最大公约数,并且判断 a 和 m 是否互质,如果不互质则不存在逆元。否则,根据扩展欧几里得算法的结果,出 x 的值作为 a 在模 m 意义下的逆元。注意,由于 x 可能是负数,所以要将其转化为正整数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_廿_尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值