【洛谷】一道类似基于大整数分解的公钥密码的算法题

P8814 [CSP-J 2022] 解密

题源:P8814 [CSP-J 2022] 解密

发现一个类RSA数学原理的因子分解问题变体,以此留作记录。

题目描述

给定一个正整数 k k k,有 k k k 次询问,每次给定三个正整数 n i , e i , d i n_i, e_i, d_i ni,ei,di,求两个正整数 p i , q i p_i, q_i pi,qi,使 n i = p i × q i n_i = p_i \times q_i ni=pi×qi e i × d i = ( p i − 1 ) ( q i − 1 ) + 1 e_i \times d_i = (p_i - 1)(q_i - 1) + 1 ei×di=(pi1)(qi1)+1

输入格式

第一行一个正整数 k k k,表示有 k k k 次询问。
接下来 k k k 行,第 i i i 行三个正整数 n i , d i , e i n_i, d_i, e_i ni,di,ei

输出格式

输出 k k k 行,每行两个正整数 p i , q i p_i, q_i pi,qi 表示答案。
为使输出统一,你应当保证 p i ≤ q i p_i \leq q_i piqi
如果无解,请输出 NO

样例 #1

样例输入 #1

10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109

样例输出 #1

2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88

提示

【样例 #2】

见附件中的 decode/decode2.indecode/decode2.ans

【样例 #3】

见附件中的 decode/decode3.indecode/decode3.ans

【样例 #4】

见附件中的 decode/decode4.indecode/decode4.ans

【数据范围】

以下记 m = n − e × d + 2 m = n - e \times d + 2 m=ne×d+2

保证对于 100 % 100\% 100% 的数据, 1 ≤ k ≤ 10 5 1 \leq k \leq {10}^5 1k105,对于任意的 1 ≤ i ≤ k 1 \leq i \leq k 1ik 1 ≤ n i ≤ 10 18 1 \leq n_i \leq {10}^{18} 1ni1018 1 ≤ e i × d i ≤ 10 18 1 \leq e_i \times d_i \leq {10}^{18} 1ei×di1018
1 ≤ m ≤ 10 9 1 \leq m \leq {10}^9 1m109

测试点编号 k ≤ k \leq k n ≤ n \leq n m ≤ m \leq m特殊性质
1 1 1 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103保证有解
2 2 2 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103
3 3 3 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104保证有解
4 4 4 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104
5 5 5 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109保证有解
6 6 6 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109
7 7 7 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证若有解则 p = q p=q p=q
8 8 8 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证有解
9 9 9 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109
10 10 10 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109

思路

最开始想到的依旧是最为朴素的一种 —— 半区间扫描出较小因子后做除法得出较大因子,最后再检查是否符合 n i = p i × q i n_i = p_i \times q_i ni=pi×qi e i × d i = ( p i − 1 ) ( q i − 1 ) + 1 e_i \times d_i = (p_i - 1)(q_i - 1) + 1 ei×di=(pi1)(qi1)+1 这个条件。然而受制于数据本身的庞大规模,始终采取这样的扫描式手段对于计算的效率必是大打折扣,于是乎就会出现…👇
TLE
甚至是…👇
WA
因此再看题面,两个条件式可以采取进一步的联立求解,此处也需要配合完全平方式的复合运算,由此可解得:
{ p = n − e d + 2 − ( n − e d − 2 ) 2 − 4 n 2 q = n − e d + 2 + ( n − e d − 2 ) 2 − 4 n 2 \begin{cases} p = \frac{n - ed + 2 - \sqrt{(n - ed - 2)^2 - 4n}}{2}\\ q = \frac{n - ed + 2 + \sqrt{(n - ed - 2)^2 - 4n}}{2} \end{cases} p=2ned+2(ned2)24n q=2ned+2+(ned2)24n

代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define OK 1
#define NO 0
typedef long long LL;

// const int INF = 2e9;
// const double pi = 3.14;


int main() {
    int k; scanf("%d", &k);
    while (k--) {
        LL n, e, d; scanf("%lld %lld %lld", &n, &e, &d);
        // p - q 表达式
        LL psubq = sqrt((n - e * d + 2) * (n - e * d + 2) - 4 * n);
        // p + q 表达式
        LL paddq = n - e * d + 2;
        // 配凑
        LL p = (psubq + paddq) / 2;
        // 互补做差
        LL q = paddq - p;
        if (p * q == n && e * d == (p - 1) * (q - 1) + 1 && p && q) {
            printf("%lld %lld\n", (LL)fmin(p, q), (LL)fmax(p, q));
        } else {
            printf("NO\n");
        }
    }
    return 0;
}

小结

这一种问题为公钥密码RSA的简化版本,并没有严格要求因子 p , q p, q p,q 为素数,即便如此,其中蕴含的求根公式构造的方法同样是可以运用的,因此个人感到值得记录下来。
至此已已,再会。








每一个不曾起舞的日子,都是对生命的辜负。
  • 25
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_廿_尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值