前言
ChatGPT 的横空出世,让很多人焦虑不已,不过,你完全不需要为此焦虑,因为比 AI 更强大永远是驾驭 AI 为自己所用的人类。
而且 GPT 远没有各大商家炒作的那么玄乎 ,它应用逻辑也非常简单,你完全没必要为此去花钱报各种班学习。今天我就用一篇文章带你掌握 GPT 的用法,本文无废话,全程干货,全部都是实操,纯小白也能看懂。只要你能认真读完本文,确保能让你对 GPT 的应用能力,超越 90% 的人!
关于 GPT 的基本面介绍,以及怎么注册,这些搜索引擎一搜一大把的东西,我们这里不浪费口舌。
所以,我们这里就直接围绕着最关键的部分,也就是:你拿到 GPT 之后的两大痛点开始讲起…
- 为什么AI无法为你所用?
很多同学拿到 GPT 后的第一个痛点就是: 用的不好。也就是说,你经常会感觉到 ChatGPT 回答的好空,没有太多参考价值… - 无处可用
有了 GPT 之后,发现自己好像并没有什么好问的,不知道可以用 GPT 来干嘛。所以,在这两个痛点的影响下,当你折腾完账号,闲聊天的新鲜期过去之后,GPT 也就跟着躺平吃灰了,你的生活、工作依旧一成不变。
可以说,我现在工作流的一切,基本上都被 AI 接管或者辅助了,它对工作效率的提升还是比较明显的。
其实,用同样的工具,我之所以能用它创造出实际的价值,而你却陷入了【回答好空,不知道用来干嘛】尴尬情况的核心原因在于:
就是因为你缺少了这么两点~
-
1.没有掌握 AI 的使用方法 。
-
2.无法让 AI 与自身的应用场景关联起来,最后屠龙刀只能当烧火棍用。
可以说,几乎所有无法用AI创造出实在生产力的同学,都死在了这两关上。
如何使用?
用一句话概括:
GPT 生成的答案质量,完全取决于你『问它』,以及『引导它』的方式。如果你能问得好,引导的好,那么它就会帮你生成让你惊喜的答案,反之则无价值,空大。
而这里 『问它的方式』 指的是:与AI沟通的语言,而 『引导它的方式』,则就是训练AI的方法。
可以说:只要你搞懂了这两点,那么你就掌握了挥动AI这把屠龙刀的能力。
究其原理在于, 目前人类的技术对自然语言(人说的话)处理的技术还不完美,所以导致目前 AI 生成内容的质量,非常依赖于提示词(Prompts)
废话不多说, 先来一段才艺, 后面再说具体原理。
相信你也看到了, 问题具象化后在GPT中产生了不同的化学反应; 相比前者, 问题具象化后得到的结果质量相差是比较大的。
其实很好理解: 如果你给AI的提示词质量不好,或者不到位,那么 AI 给到你的,往往就是那种 “像是一堆正确的废话堆积而成” 的文字垃圾。
这些东西和你用搜索引擎搜出来的那些拼凑而成的口水文,没有本质区别,对你毫无启发性。所以,想要获得 AI 高质量回答的第一步,就是先学会与 AI 沟通的语言,也就是学会写提示词(具体描述)。
你可能会问 有没有基础的阐述模版可以参考? 答案是有的(非官网)。
通用"提示词"模版
主要分为四部分:
-
【立角色】指的是:引导AI进入具体场景,为 AI 赋予行家身份。
-
【述问题】指的是:告诉AI你的困惑,你的问题,以及为AI补充问题所需要的背景信息。
-
【定目标】指的是:告诉AI你的需求,你希望它为你做到什么。
-
【补要求】指的是:告诉AI,它的回答需要注意什么,或者你想让它以什么形式来回复你。
当然,这套模板,看着会感觉比较复杂,但它操作起来还是简单的。
示例1
旅游攻略
当然,看过这个例子你可能会说,对于模板中的 “述问题、定目标、补要求” 这些部分都很好理解,这就是我们平常提问的语言模式。
到这里你可能会问: 为什么这里要加上一个 立角色 的动作,这个动作是不是有些多此一举,直接上提问,不是更干脆直接吗?
我的回答是: 这个动作并不多余,而且很重要!
往下看,加角色和没加角色的问题,GPT 最后返回给你的答案究竟差异有多大…
通过这个对比图,可以看到在完全一样询问方式以及内容的情况下,后者仅仅多了【假如你是导游】这六个字, 产生的收益是不同的。
你会发现 - 加了专家角色的提问,AI返回的结果会更具体,更具可实操性,而且回答的语气也更有人情味。
其实,之所以会造成这种差异的原因也很好理解,我们不妨拿金庸老爷子的武侠小说来解释。
如AI 所掌握的知识类似于《天龙八部》的王语嫣一样,她虽然记下了天下武学的知识; 但是她所掌握的武学知识较为宽泛又相互干扰,虽然能给出建议,却无法给出针对性的建议。
但是,当我们为 AI 加上了专家角色之后,它就不再是只会死读书的王语嫣了,而是真正化身为领域内的实战派专家来给出答案。
也就是说,专家角色可以帮助 AI 指定场景,清晰问题范围,以及补充问题所需的背景信息。
因为一个领域专家,本身就代表某个领域的知识体系以及最高的行业标准,这个动作就相当于给王语嫣叠加了一个 Buff 一样。
那么,在掌握了天下武学知识的王语嫣基础上,又为其叠加了一个个代表该领域最高成就的身份 buff,它的回答,当然会和前面只会死读书的书呆子的答案,存在很大差异。
所以说,如果你的问题需要一定深度,你想要更得到更专业的回答,而不是类似于搜索引擎式的回答,那么向 AI 提问的第一步,先给它叠加上专家的 buff,完成了这个动作之后,再告诉它你想要它做什么,以及对它的补充要求。
想必你已经清楚了叠加专家 buff 的意义了, 那么该如何为它叠加上这个Buff呢?
其实思路很简单,经过我的测试,你用以下这几个提示词都可以
-
你现在是[xx]
-
请你扮演[XX]
-
假如你是 [XX]
-
请你以 [XX] 的角度/身份/语气…
根据我的实操经验,这些提示词都是可以被 AI 所接受和理解,你这里挑选一款符合自身语言习惯的表达风格就行。
好了,当你掌握了写提示词的方法之后,再去和你过去的提问方式对比,AI所给你的回答质量,就会呈现我们前面的那种对比了~
这套写提示词的思路是通用的, 几乎所有的场景, 你都可以用这套方法来为其设计提示词~
示例2
课程大纲
AI所生成的效果:
示例3
模拟面试
AI所生成的效果:
示例4
辅助工作
示例5
AI绘画
AI所生成的效果:
总之,模板通用,例子举不胜举,只要你按照这套 SOP 模版写出的提示词,那么一般 GPT 给的答案都不会太差。
当然,以上是一套标准的 SOP 模版,如果你的问题需求非常简单,你是不需要全部按照这一套来的,对于一些简单的问题,你可根据实际场景需求灵活变化。
通过以上,相信你已经掌握了写提示词的方法了。不过虽然可以通过这套思路设计出优质的提示词并获得 AI 高质量的答案。
但是我们也知道,目前的 AI 还没有进化到逆天的程度,对于一些稍微复杂的问题,AI 的一次回答往往并不那么到位。所以,如果我们想要获得更牛逼,更深度,更有价值的回答,那么我们就需要对它进行训练。
训练方法
其实这个 『训练的方法和原理』 都很好理解。GPT 之所以牛逼,就是因为思维链技术(Chain of Thought)让它具备了,多轮对话以及理解&结合上下文语境的能力。也就是说在该技术的加持下,AI 会记住我们前面的会话内容,在前面内容的基础上,去针对性的回答我们后面的内容,实现类似于真人之间沟通的对话效果。
所以,基于 AI 的这个机制,我们可以通过不断的对其 “喂数据”&“投指令”的方式对 AI 进行训练。通过不断引导 AI 来帮助我们获得更具体、更深度、更有价值的回答,或者其他效果。
好了,这里你知道了训练 AI 的机制之后,那么具体该如何训练 AI,才能让它达到你想要的效果呢?
其实想要达到效果,需要用到两个指令:
继续指令
继续指令其本质作用就是为了帮助你突破 AI 厂商的输出限制,让 AI 的回答得以充分发挥所存在的。
关于这一点的解释:
我们也都知道,AI 大模型的训练成本是非常高的。可能是基于算力成本的考量,包括 OpenAI 在内的各大 AI 厂商都会尽可能控制 AI 所生成的篇幅,以及尽可能的通过概括文本内容 ,让内容变得简练。
以ChatGPT为例,它的单次最大输出是不会超过2048个字符的,只要超过这个字符值,AI的回答会被强制截断停止。
所以,在厂商的篇幅限制以及篇幅概括这两个限制条件下,AI 所给我们的一次性内容,就会经常让我们感觉到内容不够或者深度不够。
那么,这个时候继续指令就可以帮助我们突破这两点限制。也就是让超过 2048 字符的回答继续回答完毕,或者让第一次回答不充分的地方,继续详细展开。
拿我们上述的【旅行攻略】举例; AI 到此位置就超越了它所规定的字符后便停止下来,我们可以通过继续指令,让它把话说完。
同样的道理,即使它把话说完了,我们也还可以通过继续指令让它对回答不够深入,不够具体的地方,继续展开补充 …
当然,文中的实例只是继续指令最基础的用法,除此之外,它还有进一步的追问用法…
拿上述提到的【课程大纲】来举例子~
可以用进一步的继续指令,对其进行追问
而且在进行继续追问的过程中,也可以把前面的 【补要求】的提示词给用上。
比如:
-
请用小孩子都能听懂的例子进行解释
-
请提供不小于 5 个例子
-
请从XX领域里选例子
-
请你用活泼口语化的方式进行回答
-
请扩写…
-
请概括…
…
理论上,你可以一直按照“继续”的套路对它进行持续的追问深挖。
还是拿上述的【课程大纲】举例,也就是说你只需按照 GPT 最开始所提供的那个大纲框架。然后持续对这个大纲里面的内容进行追问,不停的套娃,最后再把每一个点追问的结果,填充到最初的大框架中,这样你就可以得到一篇,基本完全属于GPT 所生成的内容。
你最后要做的只是把GPT所生成的语言换成自身的语言风格,做好逻辑的拼接,以及最后的润色。
当然,在使用继续指令以及延伸用法的时候,这里有两点注意事项需要注意:
- 事项一:注意指令的模糊性
如果你的追问过长或者套娃层级太多的时候,你的继续指令就可能会让 AI 产生歧义呈现答非所问的情况。所以在展开追问多层级里面内容的时候,请你一定要明确对象。
比如把:【请具体介绍下第二点】,换成 【请具体介绍下提纲中的第二点】 这样更具体的描述,这样 AI 就不会给你搞混淆。
- 事项二:注意上下文语境的关联性
AI 具有强大的多轮对话,以及联系上下文的能力。如果我们在同一个对话框内穿插多个不同的话题场景,那么 AI 的回答就有可能受到前面内容的影响,而出现乱答的情况。所以在与 GPT 的互动中,如果我们想在一个对话框内,问多个不同的话题,那么我建议你在一个新话题开启的时候,初始化一下 GPT。也就是把前面的对话清空后再开始新的话题,这样就可以避免 AI 的回答受前面内容的干扰。
请你忽略前面所有的对话内容, 并用简体中文来回答我接下来的所有问题。
具体重置 ChatGPT 提示词的操作是这样的:
到此讲完了训练 AI 的继续指令
虽然说该指令可以让 AI 的回答更加丰富多彩,但是受制于语言传递信息的局限性,AI 的每一次回答,可能并不总是如意 ,甚至聊着聊着还有跑偏的现象发生。这样,就会让我们获得想要的效果的时候出现很多不必要的麻烦。
面对这种情况就需要用到训练 AI 的第二个指令,这个指令可以帮助你,设计具有“套路属性”&“模版类”任务的时候,有着神奇的效果。
奖惩指令
其实这个所谓**“奖惩指令”**有监督学习的作用,它就像是我们教育孩子一样。
如果你希望孩子达到你理想的行为标准,那么你就需要对他进行教育,如果孩子做得好,我们就需要及时的夸奖,鼓励他变得更好,而如果孩子做的差劲,我们就需要对他进行惩罚,让孩子知道你的底线。于是就是通过这样不断的棒槌 + 奖励的反复纠正下 ,孩子自然就会形成一套我们所期望的行为标准。
既然基于神经网络的 AI 具备思维链的能力,我们当然也可以按照教育孩子的这种思路让 AI 变得越来越听话。
至于这个奖惩指令的实操思路很简单,这里不妨拿我训练的【出题小助手】举例子。这一点我成长圈社群的同学应该都知道,每周我都会给我社群的同学出一道思考题。所以,在ChatGPT出现之后,我就在思考,能不能让 AI 自动或者辅助我生成思维题,以分担掉我这部分的工作负担。
于是,在这种目标的指引下,我就开启了对AI的训练…
训练思路很简单:
首先,先投喂我之前的思维题,然后让它学习和分析我出题的格式,然后让它生成答案模式。对于这些AI生成的内容,如果碰到符合我要求的地方,我就会用肯定词汇,比如:非常好,请继续保持这种形式。对于不符合我要求的地方,我就会用否定词汇,比方说:不对,你错了,请重新,要求 XXX。(一般 GPT 马上会向你道歉,并纠正其错误)
类似于你看到的这样…
于是经过重复的投喂,一轮轮的训练,最后它就成了辅助我出题的小助手了~
嗯,如果我不提前告诉你,你能分清楚那一个是 AI 出的题么…
所以,不妨思考下你工作中场景,看看有哪些是比较偏模式化的任务,对于这些比较模式化的目标你都可以通过奖惩指令对 AI 进行训练。
在训练的过程中,对于那些符合你要求的地方进行鼓励,对于不符合要求的地方进行惩罚。最后通过这样来回的奖惩之中,AI 就会达到你理想的行为标准,生成你符合你想要内容的能力,成为你工作中某个场景下的长期助手。
好了,到这里我们就讲完了关于【训练AI】的方法了~
但是我们也都知道,无论是知识还是技术,还是工具,它们最终的目的都是为了帮助我们创造实际的生存力所存在的。如果达不成这个目标,那么即使你掌握了屠龙术,但是没有龙可屠,那么这个屠龙术也是和你没有毛关系的。
很多同学之所以拿到了 GPT,也掌握了 GPT 的使用方法,却仍然使用的频次很低,甚至完全用不起来的核心原因,就是因为你没有把 AI 与你所需要的应用场景关联起来。
所以,想要让 AI 为你创造出实际的生产力你就必须找到自己的应用场景,只有把AI融入到具体场景之后才会有用武之地。
接下来的部分,我就给你分享,在掌握了操作 AI 方法论的基础上,如何让 AI 与你自己结合起来,带来实际的生产力
如何融合AI创造实在价值?
其实让 AI 和我们自身融合的思路很简单,把整个思路概括下来,无非就是两个步骤。
梳理
其实,这个【梳理】很好理解, 在电商兴起的时,马云曾说过这么一句话:所有生意,都值得用互联网再做一遍。
那么,在 AI 时代,我也想套用同样的话:几乎所有涉及到知识的工作方式,都可以再用 AI 重构一遍。
也就是说, 我们可以通过反思自己的工作场景,把那些可能被 AI 替代或者辅助的部分都给梳理出来,然后找到它们和 AI 可以结合的点, 把这些点按照前面所讲解的思路,打造出标准化的工具或者流程出来。
说人话概括就是:梳理你日常所有的工作轨迹找到AI能干的活,然后把AI能干的一律交给它或者让它辅助你来做。从而把你解放出来,去做更有价值,更具有创造力的事情。
这里我们知道了【梳理】的内涵后,那么该如何去做这个梳理呢?
其实这个思路很简单; 你可以围绕人生基本面的万能三维度(学习、工作、生活),根据我们的行为需求,对每一个维度下的场景进行挨个发散梳理。通过这种系统性的思考 ,把那些可以和AI结合的场景统统给抓出来。
学习场景
案例1:利用 AI辅助加工知识,解释知识,提供启发
案例2:利用 AI 实现与大师对话式学习
当然,在这个场景下,除了与老子对话外,你把思路迁移一下,把它换成孔子、庄子、孟子、毛泽东、拿破仑、苏格拉底…总之任何一个你感兴趣,你想和他对话的伟人。甚至让 GPT 分饰多个角色,让大佬与大佬之间对决,你来观战,从对话中学习,让学习回归到"苏格拉底式的状态"…
案例3 利用 AI 实现辅助阅读,提高理解效率
案例4: 利用AI实现各大领域的入门教练,导师
而且,同样的道理,除了这个"技术"领域的,你还可以把这个思路迁移出去,用同样的套路,去研究哲学、社会学、产品经理、运营…总之任何你想研究的领域,都可以让AI为你指路。
当然,在学习场景下,除了这些还有 N 多场景,比如,做我的英文教练、辩论教练、学习效果检测师等等…这里受制于篇幅原因,我就不一一给出示例了,如果你对【学习场景】的更多用法有兴趣,改天我再写文单独做专题分享。
好了,这里简单的介绍完学习场景下的梳理和示范,那么同样的套路,在工作场景也是如此。
工作场景
案例 1: 利用 AI 当你的工作助理
这个助理场景的案例举不胜举,你可以用它帮助你写招聘信息,写脚本,写工作文案,自媒体文案,写代码,甚至写方案…
比如,我让AI帮我写的这个产品经理的 PRD 文档,看完你是不是觉得,以后这部分工作已经岌岌可危了…
案例 2: 利用 AI 来做数据分析
#### 案例 3: 利用 AI 写会议邀请。
案例 4: 利用 AI 写文案标题
案例 5: 利用 AI 排版/筛选整合数据
生活场景
案例1: 用 AI 做健身教练
案例2: 用 AI 做私人营养师
当然,除了上面的例子外,AI 在我们生活场景中的运用,也是举不胜举。
比如:让它做你的私人律师、私人医生、私人导游等等,各种教练,各种身份,它都可以非常出色的完成!总之,无论是工作、学习、还是生活,这样的例子和场景数不胜数,我也给你举不完,你也学不完。这里放出的场景案例,只是供你开阔思路启发用的,例子本身并不重要,例子场景背后的挖掘思路才是你真正应该学习的。
只要你能围绕着【三维度的日常轨迹】去对自己做系统梳理,在梳理的过程中,每一个场景跳出来的时候,都思考下,该场景可以和AI结合的点,有就记录,没有就跳过…
只要你认真完成这个过程,那你一定可以挖出大量有用的场景,以及独到用法,而这些你亲手挖掘出来的场景,才是你真正刚需,且能为你马上解决问题的场景!!
通过以上梳理,挖掘出可以和AI结合的场景之后,我们就可以为这些梳理出来的场景加持上AI,去创造生产力了。
打造
其实,这个所谓的【打造】指的是把我们梳理出来的这些场景中,那些能标准化可重复套用的场景,让它一律的标准化、工具化,形成『场景库』,以供我们需要的时候,直接去调用。比如,我前面训练的思维题小助手,健身教练助手等等…至于为什么要做这个动作的原因也很简单~
除非我们有了一定知名度,数据有被 AI 厂商抓取的价值,否则我们这些个人训练出来的数据,都是无法进入到AI厂商的训练集数据库里的。所以即使你在一个对话框里,把 AI 训练的很听话了,但是当你重新打开一个对话框后,那么 AI 与我们前面所有的互动记忆都会消失…
所以,对于一些有价值的场景,我们就需要把我们辛苦训练出来的【场景数据】给保存下来,这样它才可以长期的为我们提供服务,而不是一次性的买卖。
比如,就拿我训练出来的【邮件小助手】来举例~当我每次需要发邮件的时候,我只需要告诉邮件的内容就行了。而对于邮件的落款,称呼,格式,写作风格等这些东西,我都不需要重复告诉它,它都会自动读取之前的数据…
同样的,类似于健身教练,营养师或者其他需要反复互动的场景等等,都是如此只要你训练出这个场景,那么下次你再需要它为你定制方案的时候,它就会自动读取你前面的数据,结合你前面的情况,来给出你当下的最好方案。之后的所有互动,你都不需要你再对它反复的交代和补充大量的背景信息…所以,当我们把这些训练好的场景,按照一定规则给保存下来形成场景库之后就可以重复的套用它们,以帮助我们省去大量的时间精力。 好了,这里你知道了,打造『场景库』的意义之后,那么具体该如何操作呢?
这里给你分享两种方式:
- 方式1:直接用 GPT 内置的场景库; 也就是说,你每次在GPT中开启一个新的对话的时候,GPT都会为你自动创建一个对话框(场景)。那么我们就可以把那些有训练价值,可以固定下来的场景给留下来,然后按照我们三维度的方式对它们进行分类命名即可。
当然,用这种方式打造场景库的局限性是比较大的; 因为官方的这个是固定格式的,那么在这种方式的限制下,我们就无法对我们的场景进行分类以及排序。 在这种死板格式下,一旦你对话的话题过多,那么这个来回翻找的麻烦劲头,会有一种让你想撞墙的感觉。所以,相对于这种方式,我更推荐你第二种
- 方式2:在你的外脑系统里(笔记管理软件);用更灵活的中控页面,对它们进行集中式的管理,做出类似于这样的效果…
其实这种方法的实现原理很简单; 如果你观察仔细,会发现GPT中的每一个对话框(场景),它都是有一个单独的独立网址的。
所以在这种机制下,我们可以把需要场景的链接给拿下来,然后在我们的外脑中,按照我们需要的逻辑给它分类下来。这样在调用每个场景的时候,就不需要打开 GPT网站,然后折腾翻找半天才能开始,而是直接来到我们的中控面板里,点开相应的链接,它立刻就会自动跳到我们相应的场景对话框里…
整个操作的过程会像德芙一样丝滑。
那么,随着你AI落地的场景越增越多,你就会在这个面板里,形成一套完全属于你自己的【AI场景库】,想要什么,一切触手可及…
到这里,我们整个AI的使用指南也就基本结束了~
总之,当你能按照咱们三维度的思路去做系统梳理,然后,再按照咱们文章开始所讲到的写提示词技能以及训练 AI 的方法,把它给训练出来。然后,把它们分门别类的固定到你的AI 场景库之后,那么恭喜你,你就成功的雇佣到免费的助理了。
它会帮助你分担掉你各个场景中的大量琐碎,帮助你全面实现工作、生活、学习效率的极大提振。只要你认真的去做了这件事,并且安排到位了,不说提升你十倍八倍的效率,那么提升个 2-3 倍的效率是绰绰有余的。
当然,最后还要提醒你一点~
AI 现阶段还没有进化到逆天的程度,所以在很多场景下,它还是没有办法做到真人的效果,而且它所生成的答案也不是百分百的正确,在很多时候它也会存在胡编乱造的答案。所以对于一些重要场景的内容,我们还需要对它进行手工润色,修改,以及对它给的信息进行溯源核对。
总之,纵有 AI 辅助,也不要丧失独立思考的能力,无论是现在还是未来,独立思考的人才能控制 AI,而不是为 AI 所控。