解决YOLOv7训练loss值为nan,P、R、mAP为0的情况

我是Yolov7可以跑通的,但是再修改了损失函数之后,在训练15-20轮时loss值为nan,P、R、mAP为0。搜了好多教程,只有这一个对我来说有用:
不用修改train.py,在detect.py中将half = device.type != ‘cpu’ 改成half = False 就可以了!!
在这里插入图片描述参考教程

### YOLOv11 训练 mAP0 的原因分析 在YOLOv11训练过程中遇到mAP0情况可能由多种因素引起。常见原因之一是数据集配置不当,包括但不限于图像与标注文件不匹配或存在损坏文件[^3]。 另一个潜在原因是使用的PyTorch版本不合适,这可能导致模型无法正确收敛,从而影响性能评估指标如精确率(Precision, P)、召回率(Recall, R),以及平均精度均(mAP)[^3]。 此外,优化算法的选择也至关重要。默认情况下,某些YOLO实现可能会采用随机梯度下降(SGD)作为优化方法;然而,在特定场景下切换至自适应矩估计(Adam)优化器能够显著改善训练效果,尤其是在初始阶段有助于更稳定的学习过程[^4]。 硬件环境同样不容忽视。有报告指出特定型号GPU可能存在兼容性问题,进而引发诸如验证损失(loss)变为NaN或是mAP异常的现象[^2]。 ### 解决方案建议 针对上述提到的各种可能性,可以采取如下措施来尝试解决问题: #### 数据校验 确保用于训练数据集无误,特别是要仔细核对图片路径及其对应的标签信息是否一一对应,并排除任何可疑的破损样本。 #### 调整依赖库版本 检查当前环境中安装的深度学习框架版本号,必要时调整至官方推荐或者社区反馈表现良好的组合。 #### 更换优化器设置 考虑修改默认的优化策略,例如通过命令行参数`--adam`启用Adam优化器替代原有的SGD选项,以此观察是否有正面变化。 ```bash python train.py --adam ``` 对于源码级别的定制化需求,则需定位到相应函数定义处(通常是`train()`),手动更改内部调用逻辑以支持所需变更。 #### 环境适配测试 如果怀疑问题是由于特定图形处理器引起的,不妨尝试更换不同类型的计算资源来进行对比实验,看能否规避该类错误的发生。 最后得注意的是,尽管这里讨论的内容主要围绕YOLO系列早期版本展开,但对于最新版YOLOv11而言,原理上仍然适用,只是具体操作细节会有所差异。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值