Redis缓存雪崩和缓存穿透、缓存预热、缓存降级
缓存雪崩
大量的key同时失效 由于原有缓存失效,新缓存还没有存入到redis的期间
比方说:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期,所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。
解决办法:
加最多的解决方案就是锁,或者队列的方式来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。还有一个简单方案就是缓存失效时间分散开,不设置固定的实效时间,采用随机失效的策略来解决
缓存穿透:
缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空,这就相当于进行了两次无用的查询。像这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题
解决办法
最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法,如果一个查询返回的数据为空,不管是数据不存在,还是系统故障,我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
缓存预热:
将热门的信息放入缓存中 用户读取的时候不再去访问数据库
缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
操作方式:
1、直接写个缓存刷新页面,上线时手工操作下;
2、数据量不大,可以在项目启动的时候自动进行加载;
然后就是缓存更新:
1、定时去清理过期的缓存;
2.、当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存
缓存降级:
当访问量剧增、服务出现问题,比如响应时间慢或不响应,或者非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有问题的服务。redis可以帮助系统实现数据降级载体,系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。