题目:
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
(请参考示例图)
注意:
一个有效的数独(部分已被填充)不一定是可解的。
只需要根据以上规则,验证已经填入的数字是否有效即可。
空白格用 ‘.’ 表示。
解题思路:
拿到是否重复这种题,第一反应就是需要建立第三个数组或者哈希表来记录当前元素是否出现过。
由该题目要求得:同一个元素不能在行、列、和同一个3x3数独中重复出现,那么我们就可以设置三个数组分别记录在这三个区域的重复情况。
行:row=[[0 for _ in range(10)] for _ in range(9)]
列:col=[[0 for _ in range(10)] for _ in range(9)]
小数独:vis=[[0 for _ in range(10)] for _ in range(9)]
这里为什么是range(10),因为我们用当前数字来做索引,所以必须索引范围必须要到9
参考代码
class Solution:
def isValidSudoku(self, board: List[List[str]]) -> bool:
vis=[[0 for _ in range(10)] for _ in range(9)]
row=[[0 for _ in range(10)] for _ in range(9)]
col=[[0 for _ in range(10)] for _ in range(9)]
for i in range(9):
for j in range(9):
if board[i][j]=='.':
continue
num=int(board[i][j])
if (vis[i//3+(j//3)*3][num] or row[i][num] or col[j][num]):
return False
vis[i//3+j//3*3][num]=1
row[i][num]=1
col[j][num]=1
return True
这里vis的行索引为什么是i//3+j//3*3
见下图(丑了点 别见外)
纵坐标为0/1/2的都属于vis[0],纵坐标为3/4/5的都属于vis[1],纵坐标为6/7/8的都属于vis[2].也就是j//3。但j//3只代表该区在当前行的位置。
大家懂了吗,嗯。。。我只能表达到这里,不懂的自己再画个图就明白了,表述能力太差。