数据结构课设——稀疏矩阵的操作

第一章 设计目的

1.掌握多维数组的逻辑结构和存储结构。

2.掌握稀疏矩阵的压缩存储及基本操作。

3.   C++语言简介:C++是C语言的继承,它既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行以继承和多态为特点的面向对象的程序设计。C++擅长面向对象程序设计的同时,还可以进行基于过程的程序设计,因而C++就适应的问题规模而论,大小由之。C++不仅拥有计算机高效运行的实用性特征,同时还致力于提高大规模程序的编程质量与程序设计语言的问题描述能力。

第二章 需求分析

1.稀疏矩阵采用十字链表表示,求两个具有相同行列数的稀疏矩阵A和B的相加矩阵C,并输出矩阵C。

2.求出A的转置矩阵D,输出D)。

3.求两个稀疏矩阵A和B的相乘矩阵E,并输出E。

第三章 总体设计

第四章 详细设计与实现

1、为要进行计算的矩阵创建结构体:

typedef struct CompressionMatrix {

       int data;

       int row;

       int column;

} CompressionMatrix;

2、矩阵相乘:

void multiply(int User_data[][MAXSIZE],int conversionmatrix[][MAXSIZE],int row,int column)

{
            for(int j = 0;j<row;j++)//因为是和转置后的相乘,所以乘后的矩阵的长和宽都等于原来矩阵的row

            int multiplydatasum;

            for(int k = 0;k<column;k++)

            {

                Multiplydatasum= = User_data[i][k]*conversionmatrix[k][j]+multiplydatasum;                                                                             

            multiply_data[i][j] = multiplydatasum;

            multiplydatasum = 0;

        }

3.矩阵相加

(1).判断是否有相加的条件(长宽相等)。

if(row!=column)

    {

        cout<<"长和宽不相同,不能相加!"; //矩阵相加的限制

    }

(2).当两个矩阵长和宽相等时,即可以相加,执行else内的语句,通过两个双重循环获取两个矩阵并相加:

else{

    int add_data[MAXSIZE][MAXSIZE];

    for(int i = 0;i<row;i++)

    {

        for(int j = 0;j<column;j++)

        {

            add_data[i][j] =  User_data[i][j]+conversionmatrix[i][j];

        }

    }

    for(int i = 0;i<row;i++)

     {

        cout<<endl;

        for(int j = 0;j<column;j++)

        {

            cout<<add_data[i][j]<<' ';

        }

     }

     putchar('\n');

     putchar('\n');

     cout<<"压缩后:"<<endl;

     compress(row,column,add_data);

   }

4.矩阵转置:

用双重循环将原矩阵的行和列交换即可得到原矩阵的转置矩阵:

for(int i = 0;i<row;i++)

     {

        for(int j = 0;j<column;j++)

        {

            conversionmatrix[j][i] =  User_data[i][j];//交换行列顺序即转化

        }

     }

5.对矩阵进行压缩:

将矩阵的数据压入压缩矩阵中:

CompressionMatrix matrix_1[MAXSIZE];//创建压缩矩阵  这里使用的是压缩矩阵里的稀疏矩阵的压缩,使用三元数组对矩阵进行存储

    for(int i = 0;i<row;i++)

    {for(int j = 0;j<column;j++)

        {

            if(User_data[i][j]!=0)

            {

                matrix_1[count].row = i+1;

                matrix_1[count].column = j+1;

                matrix_1[count].data = User_data[i][j];

                count++;

            }

        }

    }

    print(matrix_1,count);}

第五章 测试

测试用例:

输入

具体值

相加

相乘

转置矩阵

33

1  2  3

4  5  6

7  8  9

2  6  10

6  10  14

10  14  18

14  32  50

32  77  122

50  122  194

1 4  7

2 5  8

3 6  9

23

44  96  33

71  52  30

不可相加!

12241  9106

9106   8645

44   71

96   52

33   30

45

5 9 6 5 0

9 6 3 2 0

7 4 1 5 8

1 5 1 4 2

不可相加!

167 127 102 116

127 130 100 122

102 100 155 120

 116  2    120 127

4 9 7 9

9 6 4 5

6 3 1 1

5 2 5 4

0 0 8 2

44

7 8 9 9

5 6 2 4

7 1 0 3

5 2 2 1

14 13 16 14

13 12 3  6

16  3  0  5

14  6  5  2

275 137 84 78

137 81 53 45

84 53 59 40

78 45 40 34

7 5 7 5

8 6 1 2

9 2 0 2

9 4 3 1

第六章 时间复杂度分析

1.矩阵相乘

相乘方法中最高用了3个嵌套循环,时间复杂度为O(n*n*n).

2.矩阵转置

两个双重循环计算次数为n*n+n*n,时间复杂度为O(n*n);

3.矩阵相加

和矩阵转置一样,两个双重循环计算次数为n*n+n*n,时间复杂度为O(n*n);

4.矩阵压缩

两个循环嵌套,时间复杂度为O(n*n)。

第七章 源码

#include<iostream>
#define MAXSIZE 100
using namespace std;

typedef struct CompressionMatrix{
    int data;
    int row;
    int column;
}CompressionMatrix;

void print(CompressionMatrix matrix[],int count);
void compress(int row,int column,int User_data[][MAXSIZE]);//注意二维数组传参时需要传入第二维的最大值 
void conversion(int User_data[][MAXSIZE],int row,int column,int conversionmatrix[][MAXSIZE]);
void add(int User_data[][MAXSIZE],int conversionmatrix[][MAXSIZE],int row,int column);
void multiply(int User_data[][MAXSIZE],int conversionmatrix[][MAXSIZE],int row,int column);

int main()
{
    cout<<"----------------------------------------"<<endl;
    cout<<"structname : 压缩矩阵的相加,转置,相乘 "<<endl; 
    cout<<"---------------------------------------- "<<endl;
    cout<<endl;
    int row;
    int column;
    cout<<"请输入你的矩阵的行:";
    cin>>row;
    cout<<"请输入你的矩阵的列:";
    cin>>column;
    int User_data[MAXSIZE][MAXSIZE];//创建稀疏矩阵 
    cout<<endl;
    for(int i = 0;i<row;i++)
    {
        cout<<"请输入你的第"<<i+1<<"行的"<<column<<"个数据:"; 
        for(int j = 0;j<column;j++)
        {
            cin>>User_data[i][j];
        }
    }//输入数据完毕
    putchar('\n');
    cout<<"压缩后的矩阵如下图所示";
    compress(row,column,User_data);
    putchar('\n');
    cout<<"转置后的矩阵为:";
    int conversionmatrix[MAXSIZE][MAXSIZE];
    conversion(User_data,row,column,conversionmatrix);   
    putchar('\n'); 
    cout<<"与转置后的矩阵相加后:";
    add(User_data,conversionmatrix,row,column);
    putchar('\n');
    cout<<"与转置后的矩阵相乘后:";
    multiply(User_data,conversionmatrix,row,column);
    return 0;
}

void print(CompressionMatrix matrix[],int count)
{
    cout<<endl;
    cout<<"row"<<"      "<<"column"<<"      "<<"data"<<endl;
    for(int i = 0;i<count;i++)
    {
        cout<<matrix[i].row<<"           "<<matrix[i].column<<"          "<<matrix[i].data<<endl;
    }
} 

void multiply(int User_data[][MAXSIZE],int conversionmatrix[][MAXSIZE],int row,int column)
{
    //因为是转置的,所以肯定满足相乘的条件,因此不用再判断
     int  multiply_data[MAXSIZE][MAXSIZE];
     for(int i = 0;i<row;i++)
     {
        
        for(int j = 0;j<row;j++)//因为是和转置后的相乘,所以乘后的矩阵的长和宽都等于原来矩阵的row 
        {
            int multiplydatasum;
            for(int k = 0;k<column;k++)
            {
                multiplydatasum = User_data[i][k]*conversionmatrix[k][j]+multiplydatasum;//矩阵相乘的定义是第[i,j]元素
                                                                                        //等于A矩阵的第i行的数乘以B矩阵第j列的对应的数的乘积之和 
            }
            multiply_data[i][j] = multiplydatasum;
            multiplydatasum = 0;
        }
     }
        for(int i = 0;i<row;i++)
     {
        cout<<endl;
        for(int j = 0;j<row;j++)
        {
            cout<<multiply_data[i][j]<<' ';
        }
     }
     putchar('\n');
     putchar('\n');
     cout<<"压缩后:"<<endl;
     compress(row,row,multiply_data); 
}

void add(int User_data[][MAXSIZE],int conversionmatrix[][MAXSIZE],int row,int column)
{
    if(row!=column)
    {
        cout<<"长和宽不相同,不能相加!"; //矩阵相加的限制 
    }
    else{
    int add_data[MAXSIZE][MAXSIZE];
    for(int i = 0;i<row;i++)
    {
        for(int j = 0;j<column;j++)
        {
            add_data[i][j] =  User_data[i][j]+conversionmatrix[i][j];
        }
    }
    for(int i = 0;i<row;i++)
     {
        cout<<endl;
        for(int j = 0;j<column;j++)
        {
            cout<<add_data[i][j]<<' ';
        }
     }
     putchar('\n');
     putchar('\n');
     cout<<"压缩后:"<<endl;
     compress(row,column,add_data); 
   }
}

void conversion(int User_data[][MAXSIZE],int row,int column,int conversionmatrix[][MAXSIZE])
{
     for(int i = 0;i<row;i++)
     {
        for(int j = 0;j<column;j++)
        {
            conversionmatrix[j][i] =  User_data[i][j];//交换行列顺序即转化 
        }
     } 
     for(int i = 0;i<column;i++)
     {
        cout<<endl;
        for(int j = 0;j<row;j++)
        {
            cout<<conversionmatrix[i][j]<<' ';
        }
     }
     putchar('\n');
}

void compress(int row,int column,int User_data[][MAXSIZE])
{
    int count = 0;
    CompressionMatrix matrix_1[MAXSIZE];//创建压缩矩阵  这里使用的是压缩矩阵里的稀疏矩阵的压缩,使用三元数组对矩阵进行存储 
    for(int i = 0;i<row;i++)
    {
        for(int j = 0;j<column;j++)
        {
            if(User_data[i][j]!=0)
            {
                matrix_1[count].row = i+1;
                matrix_1[count].column = j+1;
                matrix_1[count].data = User_data[i][j];//将矩阵中的数据压入压缩矩阵中储存 
                count++;
            }
        }
    } 
    print(matrix_1,count);
}


  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
稀疏矩阵是指其中大部分元素为零的矩阵。由于大多数矩阵都是稠密的,即大多数元素都不为零,因此通常情况下,我们使用一个二维数组来表示一个矩阵。但是,对于稀疏矩阵来说,这种方法会造成很大的浪费,因为大量的空间被用来存储零元素。为了解决这个问题,我们可以使用稀疏矩阵三元组表示法。 稀疏矩阵三元组表示法是将稀疏矩阵中每个非零元素的行、列和值存储在一个三元组中。其数据结构如下所示: ``` struct Triple{ int row, col; double value; }; ``` 其中,row表示非零元素所在的行,col表示非零元素所在的列,value表示非零元素的值。我们可以使用一个数组来存储所有的非零元素,这个数组就是稀疏矩阵的三元组。 稀疏矩阵三元组表示法的优点是它可以节省存储空间,缺点是它不方便进行矩阵运算。因此,在进行矩阵运算时,我们需要将稀疏矩阵转换成其他更方便进行矩阵运算的表示方法,如压缩矩阵和坐标矩阵等。 对于稀疏矩阵的求解,可以使用稀疏矩阵三元组表示法结合三元组高斯消元算法来进行求解。三元组高斯消元算法是一种针对稀疏矩阵的高斯消元算法,其基本思想是将矩阵化为上三角矩阵或下三角矩阵,然后通过回代或者前代求解方程。由于矩阵中大部分元素为零,因此在进行高斯消元时,我们只需要考虑非零元素,这样可以大大提高计算效率。 三元组高斯消元算法的基本步骤如下: 1. 将稀疏矩阵转换成三元组表示法; 2. 对三元组按照行和列的顺序进行排序; 3. 从第一个非零元素开始,进行高斯消元,将矩阵化为上三角矩阵或下三角矩阵; 4. 通过回代或者前代求解方程。 具体实现可以参考以下代码: ``` void SparseTripletGaussElimination(SparseTriplet& triplet, vector<double>& b) { int n = triplet.rows; vector<Triple> A(triplet.data, triplet.data + triplet.num); sort(A.begin(), A.end(), [](const Triple& a, const Triple& b){ return a.row < b.row || (a.row == b.row && a.col < b.col); }); vector<int> row(n+1), col(triplet.num), diag(n); vector<double> val(triplet.num); for (int i = 0; i < triplet.num; i++) { row[A[i].row]++; } for (int i = 1; i <= n; i++) { row[i] += row[i-1]; } for (int i = 0; i < triplet.num; i++) { int r = A[i].row, c = A[i].col; double v = A[i].value; int k = row[r]++; // 获取 r 行中下一个非零元素的位置 col[k] = c; val[k] = v; if (r == c) { diag[r] = k; // 记录对角线元素的位置 } } for (int k = 0; k < n-1; k++) { if (val[diag[k]] == 0) { // 对角线元素为零,无法消元 throw runtime_error("zero pivot encountered"); } for (int i = diag[k]+1; i < row[k+1]; i++) { int r = col[i]; double factor = val[i] / val[diag[k]]; for (int j = diag[k]+1; j < row[k+1]; j++) { if (col[j] == r) { val[j] -= factor * val[diag[k]]; } } b[r] -= factor * b[k]; } } if (val[diag[n-1]] == 0) { // 对角线元素为零,无法消元 throw runtime_error("zero pivot encountered"); } for (int k = n-1; k >= 0; k--) { double sum = 0; for (int i = diag[k]+1; i < row[k+1]; i++) { sum += val[i] * b[col[i]]; } b[k] = (b[k] - sum) / val[diag[k]]; } } ``` 其中,SparseTriplet是稀疏矩阵三元组表示法的数据结构,b是待求解的方程的右侧向量。在实现中,我们首先将三元组按照行和列的顺序进行排序,然后将其转换成压缩矩阵的形式,接着进行高斯消元,并通过回代或者前代求解方程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值