思路
由题意可以知道当不断提高w的值时,满足
w
j
>
w
w_j > w
wj>w的值会越来越少。因此所得的Y会越来越小,所以当提高w,Y就会减少,而题目要求出
S
−
Y
S-Y
S−Y的最小值,因此可以用二分的方法通过改变w的值,从而找到
S
−
Y
S-Y
S−Y的最小值,也就是Y最接近S的时候W应该取什么值。
这里利用前缀和求出当前w值,满足
w
j
>
w
w_j > w
wj>w的数值的前缀和,并计算前i个元素中满足相关条件的值的个数cnt。这样在计算每个区间中的
y
i
y_i
yi时就会很快。
最后应该输出当前w与s之差绝对值最小的值。
问题描述
小 T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n 个矿石,从 1 到 n 逐一编号,每个矿石都有自己的重量 wi 以及价值 vi。
检验矿产的流程是:
1、给定 m 个区间[Li,Ri];
2、选出一个参数 W;
3、对于一个区间[Li,Ri],计算矿石在这个区间上的检验值 Yi :
这批矿产的检验结果 Y 为各个区间的检验值之和。
即:Y = Y1+Y2+…+Ym
若这批矿产的检验结果与所给标准值 S 相差太多,就需要再去检验另一批矿产。
小 T 不想费时间去检验另一批矿产,所以他想通过调整参数 W 的值,让检验结果尽可能的靠近标准值 S,即使得 S-Y 的绝对值最小。
请你帮忙求出这个最小值。
输入格式
第一行包含三个整数 n,m,S,分别表示矿石的个数、区间的个数和标准值。
接下来的 n 行,每行 2 个整数,中间用空格隔开,第 i+1 行表示 i 号矿石的重量 wi 和价值 vi 。
接下来的 m 行,表示区间,每行 2 个整数,中间用空格隔开,第 i+n+1 行表示区间[Li, Ri]的两个端点 Li 和 Ri。
注意:不同区间可能重合或相互重叠。
输出格式
输出一个整数,表示所求的最小值。
数据范围
1≤n,m≤200000,
0<wi,vi≤106,
0<S≤1012,
1≤Li≤Ri≤n
输入样例:
5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3
输出样例:
10
代码
#include<iostream>
using namespace std;
typedef long long LL;
const int N = 200010;
LL w[N], v[N], sum[N], l[N], r[N], cnt[N];
int n, m;
LL s;
LL get(LL W){
for(int i = 1; i <= n; ++i){
if(w[i] >= W){
sum[i] = sum[i-1] + v[i];
cnt[i] = cnt[i-1] + 1;
}else{
sum[i] = sum[i-1];
cnt[i] = cnt[i-1];
}
}
LL res = 0;
for(int i = 0; i < m; ++i){
res += (cnt[r[i]] - cnt[l[i] - 1]) * (sum[r[i]] - sum[l[i]-1]);
}
return res;
}
int main(){
scanf("%d %d %lld", &n, &m, &s);
for(int i = 1; i <= n; ++i){
scanf("%lld %lld", &w[i], &v[i]);
}
for(int i = 0; i < m; ++i){
scanf("%lld %lld", &l[i], &r[i]);
}
LL left = 0, right = 1e6+1;
while(left < right){
LL mid = left + right >> 1;
if(get(mid) <= s){
right = mid;
}else{
left = mid + 1;
}
}
cout << min(abs(get(right)-s), abs(get(right-1)-s)) << endl;
return 0;
}