算法:二分图的最大匹配(匈牙利算法)

匈牙利算法

有点像挖墙脚
这里的男孩子指的是左半部,女孩子指的是右半部。
如果你想找的妹子已经有了男朋友,
你就去问问她男朋友,
你有没有备胎,
把这个让给我好吧
因为你要去问的都是男孩子,所以存边的时候,都是由男孩子指向女孩子。

问题描述

给定一个二分图,其中左半部包含n1个点(编号1n1),右半部包含n2个点(编号1n2),二分图共包含m条边。

数据保证任意一条边的两个端点都不可能在同一部分中。

请你求出二分图的最大匹配数。

二分图的匹配:给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。

二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入格式

第一行包含三个整数 n1、 n2 和 m。

接下来m行,每行包含两个整数u和v,表示左半部点集中的点u和右半部点集中的点v之间存在一条边。

输出格式

输出一个整数,表示二分图的最大匹配数。

数据范围

1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤10^5
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2

代码

#include <iostream>
#include <cstring>
using namespace std;
const int N = 510, M = 100010;
int e[M], ne[M], idx = 0, h[N], match[N];
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        st[j] = true;
        if (!match[j] || find(match[j]))
        {
            match[j] = x;
            return true;   
        }
    }
    return false;
}


int main()
{
    int n1, n2, m;
    cin >> n1 >> n2 >> m;
    memset(h, -1, sizeof h);
    while(m--)
    {
        int a, b;
        cin >> a >> b;
        add(a, b);
    }
    int cnt = 0;
    for (int i = 1; i <= n1; i ++)
    {
        memset(st, false, sizeof st);
        if (find(i)) cnt ++;    
    }
    cout << cnt << endl;
    return 0;
}

原题链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

evil心安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值