匈牙利算法
有点像挖墙脚
这里的男孩子指的是左半部,女孩子指的是右半部。
如果你想找的妹子已经有了男朋友,
你就去问问她男朋友,
你有没有备胎,
把这个让给我好吧
因为你要去问的都是男孩子,所以存边的时候,都是由男孩子指向女孩子。
问题描述
给定一个二分图,其中左半部包含n1个点(编号1n1),右半部包含n2个点(编号1n2),二分图共包含m条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
输入格式
第一行包含三个整数 n1、 n2 和 m。
接下来m行,每行包含两个整数u和v,表示左半部点集中的点u和右半部点集中的点v之间存在一条边。
输出格式
输出一个整数,表示二分图的最大匹配数。
数据范围
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤10^5
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2
代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 510, M = 100010;
int e[M], ne[M], idx = 0, h[N], match[N];
bool st[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
st[j] = true;
if (!match[j] || find(match[j]))
{
match[j] = x;
return true;
}
}
return false;
}
int main()
{
int n1, n2, m;
cin >> n1 >> n2 >> m;
memset(h, -1, sizeof h);
while(m--)
{
int a, b;
cin >> a >> b;
add(a, b);
}
int cnt = 0;
for (int i = 1; i <= n1; i ++)
{
memset(st, false, sizeof st);
if (find(i)) cnt ++;
}
cout << cnt << endl;
return 0;
}