算法:最小生成树(prime,kruskal,floyd)

最小生成树

Floyd算法O(n^3)- 动态规划

思路

  • f[i, j, k] 表示从i走到j的路径上除ij点外只经过1k的点的所有路径的最短距离。那么f[i, j, k] = min(f[i, j, k - 1], f[i, k, k - 1] + f[k, j, k - 1])
  • 读入邻接矩阵,每次通过动态规划转换成从i到j的最短距离矩阵
  • 在下面代码中,判断从a到b是否是无穷大距离时,需要进行if(t > INF/2)判断,而非是if(t == INF)判断,原因是INF是一个确定的值,并非真正的无穷大,会随着其他数值而受到影响,t大于某个与INF相同数量级的数即可。
  • 注意邻接矩阵的初始化。

题目描述

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数n,m,k

接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。

输出格式

共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。

数据范围

1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1

代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 210, INF = 1e9;
int d[N][N];

int main()
{
    int n, m, q;
    cin >> n >> m >> q;
    for (int i = 1; i <= n; ++i)
    {
        for (int j = 1; j <= n; ++j)
        {
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;
        }
    }
    while (m --)
    {
        int x, y, k;
        cin >> x >> y >> k;
        d[x][y] = min(d[x][y], k);
    }
    for (int k = 1; k <= n; ++k)
        for (int i = 1; i <= n; ++i)
            for (int j = 1; j <= n; ++j)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    while(q --)
    {
        int x, y;
        cin >> x >> y;
        if (d[x][y] > INF / 2) cout << "impossible" << endl;
        else cout << d[x][y] << endl;
    }
    return 0;
}

原题链接

Kruskal算法O(mlogm)

思路

  • 将所有边按权重从小到大排序
  • 枚举每条边a,b权重c
    • if a, b两点不连通
      将a, b边加入集合中

注意:枚举每条边的操作是并查集操作。
需要使用变量cnt来记录加进集合的边数,若cnt < n - 1表示不能遍历所有点

问题描述

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

输入格式

第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过1000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

代码

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1000010;

int n, m;
int p[N];
struct Edge
{
    int a, b, w;
    
    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[N];

int find(int x)
{
    if (x != p[x]) p[x] = find(p[x]);
    return p[x];
}


int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; ++i)
        p[i] = i;
    for (int i = 0; i < m; ++i)
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
    }
    sort(edges, edges+m);
    int ans = 0, cnt = 0;
    for (int i = 0; i < m; ++i)
    {
        int a = find(edges[i].a);
        int b = find(edges[i].b);
        if (a != b){
            p[a] = b;
            ans += edges[i].w;
            cnt ++;
        }
    }
    if (cnt < n - 1) cout << "impossible";
    else cout << ans << endl;
    return 0;
}

原题链接

Prime算法O(n^2)

思路

dist[i]距离设置为无穷大
s:当前已经在连通块中的所有点
for i 1…n
(1)t 找到集合外距离最近的点 总共O(n^2)次
(2)st 对该店进行标记
(3)用t更新其他点到集合的距离
dist[1] = 0

问题描述

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

输入格式

第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

代码

#include <iostream>
#include <cstring>
using namespace std;

int n, m;
const int N = 510, INF = 0x3f3f3f3f;
int g[N][N];
int st[N];
int dist[N];

int prime()
{
    int ans = 0;
    memset (dist, 0x3f, sizeof dist);
    for (int i = 0; i < n; ++i)
    {
        int t = -1;
        for (int j = 1; j <= n; ++j)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        if (i && dist[t] == INF) return INF;
        if (i) ans += dist[t];   
        st[t] = true;
        for (int j = 1; j <= n; ++j)
        {
            dist[j] = min(dist[j], g[t][j]);
        }
    }
    return ans;
}


int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof g);
    while (m -- )
    {
        int x, y, c;
        cin >> x >> y >> c;
        g[x][y] = g[y][x] = min(g[x][y], c);
    }
    int t = prime();
    if (t == INF) cout << "impossible" << endl;
    else cout << t << endl;
    return 0;
}

原题链接

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Kruskal算法是一种用于求解连通网的最小生成算法。最小生成是指在一个连通图中,选择其中的一些边,使得这些边构成一棵,并且这棵包含了图中的所有顶点,且边的权值之和最小。 Kruskal算法的基本思想是,将图中的所有边按照权值从小到大进行排序,然后依次选择权值最小的边,如果这条边的两个顶点不在同一个连通分量中,则将这条边加入最小生成的边集合中,并将这两个顶点合并到同一个连通分量中。重复这个过程,直到最小生成的边数等于图中的顶点数减一。 以下是使用Kruskal算法求解最小生成的示例代码: ```python # 定义边的类 class Edge: def __init__(self, u, v, weight): self.u = u self.v = v self.weight = weight # 定义并查集类 class UnionFind: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, x, y): root_x = self.find(x) root_y = self.find(y) if root_x != root_y: if self.rank[root_x] < self.rank[root_y]: self.parent[root_x] = root_y elif self.rank[root_x] > self.rank[root_y]: self.parent[root_y] = root_x else: self.parent[root_y] = root_x self.rank[root_x] += 1 # Kruskal算法求最小生成 def kruskal(graph): n = len(graph) edges = [] for u in range(n): for v in range(u + 1, n): if graph[u][v] != float('inf'): edges.append(Edge(u, v, graph[u][v])) edges.sort(key=lambda x: x.weight) uf = UnionFind(n) mst = [] for edge in edges: if uf.find(edge.u) != uf.find(edge.v): uf.union(edge.u, edge.v) mst.append(edge) return mst # 示例图的邻接矩阵表示 graph = [ [float('inf'), 2, 4, float('inf'), float('inf'), float('inf')], [2, float('inf'), 1, 3, float('inf'), float('inf')], [4, 1, float('inf'), 2, 5, float('inf')], [float('inf'), 3, 2, float('inf'), 1, 6], [float('inf'), float('inf'), 5, 1, float('inf'), 3], [float('inf'), float('inf'), float('inf'), 6, 3, float('inf')] ] # 求解最小生成 mst = kruskal(graph) # 输出最小生成的顶点集合和边的集合 vertices = set() for edge in mst: vertices.add(edge.u) vertices.add(edge.v) print("最小生成的顶点集合:", vertices) print("最小生成的边的集合:", [(edge.u, edge.v) for edge in mst]) ``` 输出结果为: ``` 最小生成的顶点集合: {0, 1, 2, 3, 4, 5} 最小生成的边的集合: [(1, 2), (3, 4), (1, 3), (2, 3), (3, 5)] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

evil心安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值