24. 两两交换链表中的节点
思路:在不允许更改节点内容的前提下,要交换a和b两个节点,需要current指向a前面的一个节点。
时间复杂度:O(n)
空间复杂度:O(1)
注意:使用虚拟头结点,可以统一操作。
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
ListNode* dummyHead = new ListNode(0,head);
ListNode* cur = dummyHead;
while(cur->next && cur->next->next){
ListNode* front = cur->next->next;
ListNode* rear = cur->next;
ListNode* tmp = front->next;
cur->next = front;
rear->next = front->next;
front->next = rear;
cur = rear;
}
return dummyHead->next;
}
};
19.删除链表的倒数第N个节点
思路:双指针。如果要删除倒数第n个节点,让fast移动n步,然后让fast和slow同时移动,直到fast指向链表末尾。删掉slow所指向的节点就可以了。
时间复杂度:O(n)
空间复杂度:O(1)
注意:同样,有虚拟头结点,可以统一删除操作。
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* dummyHead = new ListNode(0,head);
ListNode* fast = dummyHead;
ListNode* slow = dummyHead;
//fast移动n-1次
for(int i = 0;i < n + 1;i++){
fast = fast->next;
}
//fast和slow一起移动,直到fast为null,此时slow指向待删除节点的前一个节点。
while(fast){
fast = fast->next;
slow = slow->next;
}
//删除
ListNode* p = slow->next;
slow->next = p->next;
delete(p);
return dummyHead->next;
}
};
面试题 02.07. 链表相交
思路:将两个链表对齐,从对齐的位置开始同时遍历两个链表,判断两个指针是否相等。
时间复杂度:O(n)
空间复杂度:O(1)
举例:
注意:
1.比较节点相等的条件不正确,应该比较节点本身,而不是 next 指针。错误代码:
if(p->next == q->next){
return p->next;
}
2.p 应该移动 abs(lenA - lenB) 步,而不是 lenB - lenA 步。错误代码:
//p移动lenB-lenA次
for(int i = 0;i < lenB-lenA; i++){
p = p->next;
}
代码实现:
class Solution {
public:
int getLen(ListNode *head){
ListNode* p = head;
int len = 0;
while(p){
len++;
p = p->next;
}
return len;
}
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
int lenA = getLen(headA);
int lenB = getLen(headB);
ListNode* p;
ListNode* q;
if(lenA >= lenB){
p = headA;
q = headB;
}
else{
p = headB;
q = headA;
}
//p移动lenB-lenA次
for(int i = 0;i < abs(lenB-lenA); i++){
p = p->next;
}
while(p && q){
if(p == q){
return p;
}
p = p->next;
q = q->next;
}
return NULL;
}
};
142.环形链表II
思路:这道题目,不仅考察对链表的操作,而且还需要一些数学运算。主要考察两知识点:
- 判断链表是否环
- 如果有环,如何找到这个环的入口
时间复杂度:O(n)
空间复杂度:O(1)
分析:
1.判断链表是否环。快慢指针法,fast每次移走两步,slow每次移走一步,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。理由:fast和slow相对运动,fast每次比slow多走一步,是追赶slow的过程,因此,如果有环,一定可以相遇。
2.如果有环,如何找到这个环的入口。
x+y+n(y+z)=2(x+y)
x+y=n(y+z)
x=n(y+z)-y
x=(n-1)(y+z)+y+z-y
x=(n-1)(y+z)+z
从头结点出发一个指针,从相遇节点也出发一个指针,这两个指针每次只走一个节点,那么当这两个指针相遇的时候就是环形入口的节点。
代码实现:
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode* fast = head;
ListNode* slow = head;
while(fast && fast->next){
fast = fast->next->next;
slow = slow->next;
if(fast == slow){ //快慢指针相遇,说明有环
ListNode* index1 = fast;
ListNode* index2 = head;
while(index1 != index2){
index1 = index1->next;
index2 = index2->next;
}
return index1;
}
}
//没有环
return NULL;
}
};