189. 轮转数组
给你一个数组,将数组中的元素向右轮转 k
个位置,其中 k
是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
思路
注意:本题有个小坑,题目输入中,如果 k 大于 nums.length 了应该怎么办?
其实就是右移 k % nums.length 次,即:15 % 7 = 1
本题最容易想到的就是双重循环,暴力解法,首先循环 k 次,每次将数组元素向右轮转一个位置。
var rotate = function(nums, k) {
k = k % nums.length;
//遍历k次,操作元素向右轮转
for (let j = 1; j <= k; j++) {
let tem = nums[nums.length - 1];
// 遍历数组元素,将数组元素向右轮转一个位置
for (let i = nums.length - 1; i >= 1 ; i--) {
nums[i] = nums[i - 1];
}
nums[0] = tem;
}
};
不得行不得行,事件复杂度太高了,怎么给优化一下呢?观察轮转前和轮转后的数组,轮转后的数组就是将原数组的最后 k 个元素以原顺序移到了数组的前边。完成这个动作需要三步
- 拿到后 k 个元素。
- 将原数组前 nums.length - k 个元素向后移动 k 个位置。
- 将后 k 个元素按顺序放入到数组中。
var rotate = function(nums, k) {
k = k % nums.length;
const tem = [];
// 第一步
for (let j = nums.length - k; j < nums.length; j++) {
tem.push(nums[j])
}
// 第二步
for (let i = nums.length - 1; i >= k; i--) {
nums[i] = nums[i - k];
}
// 第三步
for (let i = 0; i < k ; i++) {
nums[i] = tem[i];
}
}
再仔细想一想,这一题还可以怎么做呢?其实可以发现这一题还可以使用翻转数组的方法,以例子 [1,2,3,4,5,6,7] 说明:
- 翻转整个数组得到 [7,6,5,4,3,2,1]
- 翻转前 k 个元素得到 [5,6,7,4,3,2,1]
- 翻转后 nums.length - k 个元素的到 [5,6,7,1,2,3,4]
是不是很巧妙,其实很多数组轮转的题目都可以使用这种解法
var rotate = function(nums, k) {
k = k % nums.length;
// 定义翻转函数
function reverses(nums, i, j) {
while (i < j) {
[nums[i], nums[j]] = [nums[j], nums[i]]
i++;
j--;
}
}
//第一步
nums.reverse();
//第二步
reverses(nums, 0, k - 1);
//第三步
reverses(nums, k, nums.length - 1);
return nums;
};
34. 在排序数组中查找元素的第一个和最后一个位置
给定一个按照升序排列的整数数组 nums
,和一个目标值 target
。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
进阶:
- 你可以设计并实现时间复杂度为
O(log n)
的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
思路
本题还是比较简单的一题,因为题目说了,数组元素按升序排列,那么相等的元素一定在一起,所以可以先从前边找 target 位置,再从后边找。这里借助 js 的 API 。
var searchRange = function(nums, target) {
const l = nums.indexOf(target);
const r = nums.lastIndexOf(target);
return [l,r];
};
也可以从前边开始先找到 target 出现的位置,再继续遍历找 target 结束的位置
var searchRange = function(nums, target) {
let l = 0, r = l;
// 找target第一次出现的位置
while(l < nums.length && nums[l] !== target){
l++;
}
r = l;
// 从第一次出现的位置找 target 最后一次出现的位置
while (r < nums.length && nums[r] === target) {
r++;
}
return (l === r && l === nums.length) ? [-1,-1] : [l,r - 1];
};
724. 寻找数组的中心下标
给你一个整数数组 nums
,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0
,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1
。
示例 1:
输入:nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。
示例 2:
输入:nums = [1, 2, 3]
输出:-1
解释:
数组中不存在满足此条件的中心下标。
示例 3:
输入:nums = [2, 1, -1]
输出:0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。
思路
这道题目还是比较简单的
- 遍历一遍求出总和rsum,并将其作为右半和值。
- 遍历第二遍求中心索引左半和lsum
- 右半和要减去当前的元素, 因为前元素不算是右半的值了 rsum - nums[i]。
- 判断lsum和rsum是否相同。
- 如不相同,那么左半和要加上当前元素,因为 i + 1 后当前元素就算是左半的元素了。
var pivotIndex = function(nums) {
let rsum = 0, lsum = 0, index = -1;
// 求总和并做为右半和
for (let i = 0; i < nums.length; i++) {
rsum += nums[i];
}
// 遍历求中心索引
for ( index = 0; index < nums.length; index++) {
rsum -= nums[index];
if (lsum === rsum) {
return index;
} else {
lsum += nums[index];
}
}
return -1;
};