最小编辑距离问题

最小编辑距离问题

问题描述

给你两个单词 word1word2, 请返回将 word1 转换成 word2 所使用的最少操作数。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

这是典型的动态规划问题,因为 word 1 和 word 2 可以划分为子问题,而且子问题与原问题有类似的解结构。

状态定义

dp[i][j] 定义为 word1的前 i 个字符到 word2 的前 j 个字符的最小操作距离。

状态转移

假设当前处理的子字符串分别为 s1s2

  1. s1 与 s2 的末尾字符相同

    dp[i][j] = dp[i-1][j-1]

  2. s1 与s2 的末尾字符不相同

    1. (删)删除s1 的末尾字符(假设 s1 的前 i-1 个字符和 s2 的前 j 个字符具有高度相似性)

      dp[i][j] = dp[i-1][j]+1

    2. (插)在 s1 的末尾插入一个字符与 s2 末尾字符相同(假设s1 的前 i 个字符和 s2 的前 j-1 个字符具有高度相似性)

      dp[i][j] = dp[i][j-1]+1

    3. (改)将 s1 的末尾字符替换为与 s2 末尾字符相同的字符(假设 s1 的前 i-1 个字符与 s2 的前 j-1 个字符具有高度相似性)

      dp[i][j] = dp[i-1][j-1]+1

边界条件

dp[0][0] = 0

dp[i][0] = i

dp[0][j] = j

状态转移方程

if(s1[i-1] == s2[j-1])	dp[i][j] = dp[i-1][j-1];
else dp[i][j] = 1 + min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]);

代码实现

#include <iostream>
#include <string>
using namespace std;

string s1, s2;
int dp[20][20];

int MED(string s1, string s2)
{
    memset(dp, 0, sizeof(dp));
    for (int i = 0; i <= s1.length(); i++)
        dp[i][0] = i;
    for (int i = 0; i <= s2.length(); i++)
        dp[0][i] = i;

    for (int i = 1; i <= s1.length(); i++)
    {
        for (int j = 1; j <= s2.length(); j++)
        {
            if (s1[i - 1] == s2[j - 1])
                dp[i][j] = dp[i - 1][j - 1];
            else
                dp[i][j] = 1 + min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]);
        }
    }

    return dp[s1.length() - 1][s2.length() - 1];
}

int main()
{
    s1 = "intention";
    s2 = "execution";

    cout << MED(s1, s2) << endl;
}

github 仓库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值