Educoder中Hive综合应用案例——用户学历查询

11 篇文章 22 订阅 ¥9.90 ¥99.00

第1关:查询每一个用户从出生到现在的总天数

---------- 禁止修改 ----------
 drop database if exists mydb cascade;
---------- 禁止修改 ----------


---------- begin ----------
---创建mydb数据库
create database mydb;

---使用mydb数据库
use mydb;

---创建表user
create table usertab(
    id int,
    sex string,
    time string,
    education string,
    occupation string,
    income string,
    area string,
    desired_area string,
    city_countryside string
)row format delimited fields terminated by ',';




---导入数据:/root/data.txt
load data local inpath '/root/data.txt' into table usertab;

--查询每一个用户从出生到2019-06-10的总天数
select id,datediff(cast('2019-06-10' as date),cast(regexp_replace(time, '/', '-') as date)) from usertab;




---------- end ----------

第2关:同一个地区相同的教育程度的最高收入

---------- 禁止修改 ----------
 drop database if exists mydb cascade;
---------- 禁止修改 ----------


---------- begin ------
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Hive是一个大数据分析的开源平台,它提供了很多的综合应用案例,其之一是用户学历查询用户学历查询案例,我们可以使用Hive数据仓库读取关于用户的数据,然后通过分析和聚合这些数据,来确定用户学历信息。在这个过程Hive提供了强大的SQL语句支持,以及丰富的函数库,可以满足各种复杂的分析需求。 ### 回答2: 近日,一家大型人力资源公司因为工作频繁查询员工学历信息而决定使用hive技术来进行数据的处理和分析,通过hive综合应用,实现了更加高效便捷的用户学历查询。 此次项目,该公司首先进行了数据清洗和处理,将员工学历相关信息从不同的数据源收集并整合,统一存储在hive数据仓库。接着,通过hiveQL语言对数据进行查询和筛选,实现了仅需几秒钟即可得到用户学历信息的目标。使用hive的好处是能够快速处理海量数据,提高查询效率,同时还能实现数据分析和统计,并可视化展示数据结果。 在具体的操作,该公司将原始数据进行拆分和转换,把不同的表进行组合和分析。同时,在处理数据过程还运用了一些hadoop生态体系的其他组件,比如pig和spark等工具,以提高效率和处理这些数据所需的时间。在处理完成之后,用户可以通过hive用户学历进行查询,根据自己的需要,可以根据职位、学历、工作年限等限定条件来查询,大大地提高了查询精度,也让招聘和人事等相关部门的工作变得更加轻松便捷。 总的来说,该项目成功运用了hive技术,实现了用户学历查询的目标,提升了工作效率和数据查询的准确度。而且此次项目的经验和教训也可以为其他公司和企业在hive技术的运用方面提供借鉴和参考。 ### 回答3: HiveHadoop生态系统的一项重要技术,它是基于Hadoop的MapReduce框架的数据仓库解决方案,可以进行大规模数据的存储和处理。而学历查询是一个典型的数据查询场景,由于学历查询需要对大量的数据进行快速高效的查询和分析,因此使用Hive进行学历查询可以大大提高查询效率和数据处理能力。 以学历查询为例,如果我们需要查询某个区域内所有人的学历情况,我们需要从海量的数据筛选出相关的信息,然后进行分析和统计,这个过程需要耗费大量的时间和精力。但是如果使用Hive,我们可以通过Hive的SQL查询语句来快速实现数据查询和分析。 具体来说,如果我们要查询一个城市的所有居民的学历情况,首先要准备好相应的数据表或数据集,然后利用Hive的相关命令将数据导入到Hive。在数据导入完成后,我们可以使用类似于SQL的语句来实现查询。例如,我们可以使用Hive的SELECT语句和GROUP BY语句来实现按学历等级进行分组并统计各组的人数。 当然,如果需要更加复杂的查询和分析任务,我们也可以使用Hive进行更多的数据处理和计算任务。例如,Hive支持使用自定义的UDF函数,可以对数据实现更加灵活和精细化的处理。 总而言之,Hive作为一种分布式数据存储和查询解决方案,可以为学历查询等数据处理场景提供快速、高效和可扩展的解决方案。通过合理的数据分析和查询,可以帮助我们更好地了解数据背后的真相,为业务决策提供更多有效的参考和支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小施没烦恼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值