霍夫变换

霍夫变换详解
本文介绍了霍夫变换这一图像处理技术的基础原理及应用。通过霍夫变换可以在图像中识别出直线等几何形状,文章详细解释了如何通过转换图像点到参数空间来识别直线,并提供了hough_lines函数的具体使用说明。

       霍夫变换

 

定义:

霍夫变换是图像处理中从图像中识别几何形状的基本方法之一.几何形状包括圆,椭圆,直线等等.

直线方程:

直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距;

霍夫变换原理:

设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(2,2)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。

  

             直角坐标系                               参数坐标系

 

直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率,所以实际应用中,是采用参数方程p=x*cos(θ)+y*sin(θ)。这样,图像平面上的一个点就对应到参数p---θ平面上的一条曲线上。

 

hough_lines(RegionIn : : AngleResolutionThresholdAngleGapDistGap :AngleDist)

RegionIn:二值化边缘图像

AngleResolution:角度的步进,步进大小为AngleResolution/1

Threshold:要寻找的直线的阈值

AngleGap:定义Hough图像中的点的邻域范围,从而确定局部最大值。

DistGap:定义Hough图像中的点的邻域范围,从而确定局部最大值。

Angle:找到的直线的角度

Dist:找到的直线到圆点的距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值