霍夫变换
定义:
霍夫变换是图像处理中从图像中识别几何形状的基本方法之一.几何形状包括圆,椭圆,直线等等.
直线方程:
直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距;
霍夫变换原理:
设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(2,2)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。
直角坐标系 参数坐标系
当直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率,所以实际应用中,是采用参数方程p=x*cos(θ)+y*sin(θ)。这样,图像平面上的一个点就对应到参数p---θ平面上的一条曲线上。
hough_lines(RegionIn : : AngleResolution, Threshold, AngleGap, DistGap :Angle, Dist)
RegionIn:二值化边缘图像
AngleResolution:角度的步进,步进大小为AngleResolution/1
Threshold:要寻找的直线的阈值
AngleGap:定义Hough图像中的点的邻域范围,从而确定局部最大值。
DistGap:定义Hough图像中的点的邻域范围,从而确定局部最大值。
Angle:找到的直线的角度
Dist:找到的直线到圆点的距离
霍夫变换详解
本文介绍了霍夫变换这一图像处理技术的基础原理及应用。通过霍夫变换可以在图像中识别出直线等几何形状,文章详细解释了如何通过转换图像点到参数空间来识别直线,并提供了hough_lines函数的具体使用说明。

被折叠的 条评论
为什么被折叠?



