(nice!!!)(LeetCode 每日一题)2179. 统计数组中好三元组数目(线段树)

题目:2179. 统计数组中好三元组数目

在这里插入图片描述
在这里插入图片描述

思路:映射+线段树,时间复杂度0(nlogn)。细节看注释
参考大佬的思路

在这里插入图片描述
通过映射,把nums2的元素置换为[0,1,2,…,n-1],后面只需对nums1中置换后的元素进行枚举即可。
在这里插入图片描述
而这里的less,可以通过线段树来维护,时间复杂度0(logn)。而最终的时间复杂度为0(nlogn)。

class Solution {
public:
    vector<int> v;
    void push_up(int u){
        v[u]=v[u<<1]+v[u<<1|1];
    }
    int query(int u,int l,int r,int L,int R){
        if(L<=l&&r<=R){
            return v[u];
        }
        if(r<L || l>R) return 0;
        int mid=(l+r)/2;
        int res=query(u<<1,l,mid,L,R)+query(u<<1|1,mid+1,r,L,R);
        return res;
    }
    void update(int u,int l,int r,int a,int b){
        if(l==r){
            v[u]+=b;
            return ;
        }
        int mid=(l+r)/2;
        if(a<=mid) update(u<<1,l,mid,a,b);
        else update(u<<1|1,mid+1,r,a,b);
        push_up(u);
    }
    long long goodTriplets(vector<int>& nums1, vector<int>& nums2) {
        int n=nums1.size();
        //映射函数
        vector<int> pos(n);
        for(int i=0;i<n;i++){
            pos[nums2[i]]=i+1;
        }
        //答案
        long long ans=0;
        //线段树
        v=vector<int>((n+5)<<2,0);
        //枚举j
        for(auto x:nums1){
        	//映射
            x=pos[x];
            //找到在其左边的元素个数
            int left=query(1,1,n,1,x);
            //右边的元素个数
            int right= n-x-(query(1,1,n,1,n)-query(1,1,n,1,x));
            ans+=1ll *left *right;
            update(1,1,n,x,1);
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值