题目:2179. 统计数组中好三元组数目
思路:映射+线段树,时间复杂度0(nlogn)。细节看注释
参考大佬的思路
通过映射,把nums2的元素置换为[0,1,2,…,n-1],后面只需对nums1中置换后的元素进行枚举即可。
而这里的less,可以通过线段树来维护,时间复杂度0(logn)。而最终的时间复杂度为0(nlogn)。
class Solution {
public:
vector<int> v;
void push_up(int u){
v[u]=v[u<<1]+v[u<<1|1];
}
int query(int u,int l,int r,int L,int R){
if(L<=l&&r<=R){
return v[u];
}
if(r<L || l>R) return 0;
int mid=(l+r)/2;
int res=query(u<<1,l,mid,L,R)+query(u<<1|1,mid+1,r,L,R);
return res;
}
void update(int u,int l,int r,int a,int b){
if(l==r){
v[u]+=b;
return ;
}
int mid=(l+r)/2;
if(a<=mid) update(u<<1,l,mid,a,b);
else update(u<<1|1,mid+1,r,a,b);
push_up(u);
}
long long goodTriplets(vector<int>& nums1, vector<int>& nums2) {
int n=nums1.size();
//映射函数
vector<int> pos(n);
for(int i=0;i<n;i++){
pos[nums2[i]]=i+1;
}
//答案
long long ans=0;
//线段树
v=vector<int>((n+5)<<2,0);
//枚举j
for(auto x:nums1){
//映射
x=pos[x];
//找到在其左边的元素个数
int left=query(1,1,n,1,x);
//右边的元素个数
int right= n-x-(query(1,1,n,1,n)-query(1,1,n,1,x));
ans+=1ll *left *right;
update(1,1,n,x,1);
}
return ans;
}
};