(LeetCode 动态规划(基础版))198. 打家劫舍(动态规划dp)

题目:198. 打家劫舍

在这里插入图片描述

方法一:动态规划dp,时间复杂度0(n)。
C++版本:

class Solution {
public:
    int rob(vector<int>& nums) {
        int n=nums.size();
        //状态f[i][0]:不选第i-1位元素可以拿的最大值(i:1~n+1)
        //状态f[i][1]:选第i-1位元素可以拿的最大值(i:1~n+1)
        vector<vector<int>> f(n+1,vector<int>(2,0));
        f[1][1]=nums[0];
        int mx=f[1][1];
        for(int i=1;i<n;i++){
            f[i+1][0]=max(f[i][0],f[i][1]);
            f[i+1][1]=f[i][0]+nums[i];
            mx=max(f[i+1][0],mx);
            mx=max(f[i+1][1],mx);
        }
        return mx;
    }
};

方法二:动态规划dp,时间复杂度0(n)。

C++版本:

class Solution {
public:
    int rob(vector<int>& nums) {
        int n=nums.size();
        //状态f[i]:在0~i-1的元素中所能取到的最大值
        vector<int> f(n+1,0);
        f[1]=nums[0];
        int mx=f[1];
        for(int i=1;i<n;i++){
            f[i+1]=max(f[i],f[i-1]+nums[i]);
            mx=max(f[i+1],mx);
        }
        return mx;
    }
};

JAVA版本:

class Solution {
    public int rob(int[] nums) {
        int n=nums.length;
        int[] f=new int[n+1];
        f[1]=nums[0];
        int mx=f[1];
        for(int i=1;i<n;i++){
            f[i+1]=Math.max(f[i],f[i-1]+nums[i]);
            mx=Math.max(f[i+1],mx);
        }
        return mx;
    }
}

Go版本:

func rob(nums []int) int {
    n:=len(nums)
    f:=make([]int,n+1)
    f[0]=0
    f[1]=nums[0]
    mx :=f[1]
    for i:=1;i<n;i++ {
        f[i+1]=max(f[i],f[i-1]+nums[i])
        mx=max(mx,f[i+1])
    }
    return mx
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值