(LeetCode 动态规划(基础版) )63. 不同路径 II(动态规划dp)

题目:63. 不同路径 II

在这里插入图片描述
在这里插入图片描述
思路:动态规划dp,时间复杂度0(nm)。

C++版本:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n=obstacleGrid.size(),m=obstacleGrid[0].size();
        vector<vector<int>> f(n+1,vector<int>(m+1,0));
        f[0][1]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                if(obstacleGrid[i-1][j-1]==1) continue;
                f[i][j]=f[i-1][j]+f[i][j-1];
            }
        }
        return f[n][m];
    }
};

JAVA版本:

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int n=obstacleGrid.length,m=obstacleGrid[0].length;
        int[][] f = new int[n+1][m+1];
        f[0][1]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                if(obstacleGrid[i-1][j-1]==1) continue;
                f[i][j]=f[i-1][j]+f[i][j-1];
            }
        }
        return f[n][m];
    }
}

Go版本:

func uniquePathsWithObstacles(obstacleGrid [][]int) int {
    n,m:=len(obstacleGrid),len(obstacleGrid[0])
    f:=make([][]int,n+1)
    for i:=range f {
        f[i]=make([]int,m+1)
    }
    f[0][1]=1
    for i:=1;i<=n;i++ {
        for j:=1;j<=m;j++ {
            if obstacleGrid[i-1][j-1] == 1 {
                continue
            }
            f[i][j]=f[i-1][j]+f[i][j-1]
        }
    }
    return f[n][m]
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值