(nice!!!)(LeetCode 动态规划(基础版))646. 最长数对链(动态规划dp || 贪心)

题目:646. 最长数对链

在这里插入图片描述

方法一:动态规划dp,时间复杂度0(n^2)。
C++版本:

class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
        sort(pairs.begin(),pairs.end());
        int n=pairs.size();
        vector<int> f(n);
        int mx=0;
        for(int i=0;i<n;i++){
            f[i]=1;
            for(int j=i-1;j>=0;j--){
                if(pairs[i][0]>pairs[j][1]) f[i]=max(f[i],f[j]+1);
            }
            mx=max(f[i],mx);
        }
        return mx;

    }
};

JAVA版本:

class Solution {
    public int findLongestChain(int[][] pairs) {
        Arrays.sort(pairs,Comparator.comparingInt(a->a[0]));
        int n=pairs.length;
        int[] f=new int[n];
        int mx=0;
        for(int i=0;i<n;i++){
            f[i]=1;
            for(int j=i-1;j>=0;j--){
                if(pairs[i][0]>pairs[j][1]) f[i]=Math.max(f[i],f[j]+1);
            }
            mx=Math.max(f[i],mx);
        }
        return mx;
    }
}

Go版本:

func findLongestChain(pairs [][]int) int {
    sort.Slice(pairs,func(i,j int) bool{
        return pairs[i][0]<pairs[j][0]
    })

    n:=len(pairs)
    f:=make([]int,n)
    mx:=0
    for i:=0;i<n;i++ {
        f[i]=1
        for j:=i-1;j>=0;j-- {
            if pairs[i][0]>pairs[j][1] {
                f[i]=max(f[i],f[j]+1)
            }
        }
        mx=max(mx,f[i])
    }
    return mx
}

方法二:贪心+排序,时间复杂度0(nlogn)。

C++版本:

class Solution {
public:
    typedef pair<int,int> PII;
    int findLongestChain(vector<vector<int>>& pairs) {
    	//先确保第二个元素是升序排序
        vector<PII> v;
        for(auto x:pairs){
            v.push_back({x[1],x[0]});
        }
        sort(v.begin(),v.end());
        //ans:答案,mn:当前数对链的最小右边值
        int ans=0,mn=INT_MIN;
        // 贪心
        for(auto x:v){
        	//当前数对的左边值大于mn,那可以加入,且相对于后面的数对是最优的,因为右边值是递增的。
            if(mn<x.second){
                ans++;
                mn=x.first;
            }
        }
        return ans;
    }
};

方法三:贪心+二分,类似最长上升子序列解法。时间复杂度0(n)。
C++版本:

class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
        sort(pairs.begin(),pairs.end());
        int n=pairs.size();
        //维护最长上升子序列的右边值
        vector<int> v(n+1);
        //哨兵
        v[0]=-2000;
        //最长上升子序列长度
        int top=1;
        for(auto x:pairs){
            int l=0,r=top;
            // 二分找到符合当前数对的左边值 > 前面数对的右边值,的最后一个位置的右边
            while(l<r){
                int mid=(l+r)/2;
                if(v[mid]<x[0]) l=mid+1;
                else r=mid;
            }
            //子序列长度增加
            if(l==top){
                v[l]=x[1];
                top++;
            }
            //维护子序列长度为l+1时的“最小的右边值”
            v[l]=min(v[l],x[1]);
        }
        return top-1;
    }
};

也可以用自带的二分

class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
        sort(pairs.begin(),pairs.end());
        vector<int> v;
        v.push_back(INT_MIN);
        for(int i=0;i<pairs.size();i++){
            int id=lower_bound(v.begin(),v.end(),pairs[i][0])-v.begin();
            if(id==v.size()) v.push_back(pairs[i][1]);
            else v[id]=min(v[id],pairs[i][1]);
        }
        return v.size()-1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值