(nice!!!)(LeetCode 每日一题) 3372. 连接两棵树后最大目标节点数目 I (贪心+深度优先搜索dfs)

题目:3372. 连接两棵树后最大目标节点数目 I

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

思路:贪心+深度优先搜索dfs。时间复杂度0(n2+m2),细节看注释。

第二棵树 ,其实就是找出从某个点出发,k-1步能得到的最大目标节点个数mx。

C++版本:

class Solution {
public:
	// 构建邻接表
    void solve(vector<vector<int>>& edge,vector<vector<int>> &g){
        for(auto e:edge){
            int x=e[0],y=e[1];
            g[x].push_back(y);
            g[y].push_back(x);
        }
    }
    //参数:u表示当前结点、fa表示当前结点的父节点、d表示当前的距离
    //返回值:当前节点u还能抵达的目标子节点个数
    int dfs(int u,int fa,int d,vector<vector<int>> &g,int k){
        if(d>k) return 0;
        int ans=1;
        for(auto x:g[u]){
            if(x==fa) continue;
            ans+=dfs(x,u,d+1,g,k);
        }
        return ans;
    }
    vector<int> maxTargetNodes(vector<vector<int>>& edges1, vector<vector<int>>& edges2, int k) {
    	//转成邻接表,便于后续dfs的遍历
        int n=edges1.size(),m=edges2.size();
        vector<vector<int>> g1(n+1),g2(m+1);
        solve(edges1,g1);
        solve(edges2,g2);
        //第二棵树 ,k-1步能得到的最大目标节点个数mx。
        int mx=0;
        for(int i=0;i<=m;i++){
            int t=dfs(i,-1,0,g2,k-1);
            mx=max(mx,t);
        }
        //答案
        vector<int> v;
        for(int i=0;i<=n;i++){
            int t=dfs(i,-1,0,g1,k);
            v.push_back(t+mx);
            //cout<<t<<"---"<<mx<<endl;
        }
        return v;
    }
};

JAVA版本:

class Solution {

    void solve(int[][] edge,List<List<Integer>> g){
        for(var e:edge){
            int x=e[0],y=e[1];
            g.get(x).add(y);
            g.get(y).add(x);
        }
    }
    int dfs(int u,int fa,int d,List<List<Integer>> g,int k){
        if(d>k) return 0;
        int ans=1;
        for(var x:g.get(u)){
            if(x==fa) continue;
            ans+=dfs(x,u,d+1,g,k);
        }
        return ans;
    }

    public int[] maxTargetNodes(int[][] edges1, int[][] edges2, int k) {
        int n=edges1.length,m=edges2.length;
        List<List<Integer>> g1=new ArrayList<>();
        List<List<Integer>> g2=new ArrayList<>();
        for(int i=0;i<=n;i++){
            g1.add(new ArrayList<Integer>());
        }
        for(int i=0;i<=m;i++){
            g2.add(new ArrayList<Integer>());
        }
        solve(edges1,g1);
        solve(edges2,g2);
        int mx=0;
        for(int i=0;i<=m;i++){
            int t=dfs(i,-1,0,g2,k-1);
            mx=Math.max(mx,t);
        }
        int[] v=new int[n+1];
        for(int i=0;i<=n;i++){
            int t=dfs(i,-1,0,g1,k);
            v[i]=t+mx;
            //cout<<t<<"---"<<mx<<endl;
        }
        return v;
    }
}

Go版本:

func maxTargetNodes(edges1 [][]int, edges2 [][]int, k int) []int {
    n:=len(edges1)
    m:=len(edges2)
    g1:=make([][]int,n+1)
    g2:=make([][]int,m+1)
    solve(g1,edges1)
    solve(g2,edges2)
    mx:=0
    for i:=0;i<=m;i++ {
        t:=dfs(i,-1,0,g2,k-1)
        mx=max(mx,t)
    }
    v:=make([]int,n+1)
    for i:=0;i<=n;i++ {
        t:=dfs(i,-1,0,g1,k)
        v[i]=t+mx
    }
    return v
}
func solve(g [][]int,edges [][]int) {
    for _,e := range edges {
        x,y:=e[0],e[1]
        g[x]=append(g[x],y)
        g[y]=append(g[y],x)
    }
}

func dfs(u int,fa int,d int,g [][]int,k int) int{
    if d>k {
        return 0
    }
    ans:=1
    for _,x:=range g[u] {
        if x!=fa {
            ans+=dfs(x,u,d+1,g,k)
        } 
    }
    return ans
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值