迪杰斯特拉的优化算法采用堆优化,优化之前是花费
O
(
n
)
O(n)
O(n)时间来查找未最优点里面距离点1最小的点。现在使用堆优化,直接花费
O
(
1
)
O(1)
O(1)时间就完事儿了。
堆里面存储
p
a
i
r
<
i
n
t
,
i
n
t
>
pair<int,int>
pair<int,int>类型,前面int
存储距离first
,后面存储顶点second
。默认排序按照pair
的第一个int
进行排序。小的存储在堆顶。
然后取出来顶点ver
和distance
,沿着ver关联的所有出边,查找是否存在通过ver
的点到点j
的距离使得d[j]
更短。
st数组表示标识st【j】,j这个点是否已经是最优的最短距离!
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6 + 10;
int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[ver] + w[i])
{
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
printf("%d\n", dijkstra());
return 0;
}