一维前缀和
求解前缀和问题不能把问题看成面积问题求解,要把问题看成一个数集问题,注意边界
输出原序列中从第 l 个数到第 r 个数的和:
#include<iostream>
using namespace std;
const int N=100010;
int q[N],a[N];
int n,m,l,r;
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) q[i]=q[i-1]+a[i];//求前缀和数组
while(m--)
{
cin>>l>>r;
cout<<q[r]-q[l-1]<<endl;
}
return 0;
}
二维前缀和
子矩阵的和问题
#include<iostream>
using namespace std;
const int N=1010;
int n,m,q;
int a[N][N],s[N][N];
int main()
{
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
//前缀和方程:s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]-a[i][j]
//特别小心边界问题,注意是一个数集,不能用面积直接求解
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
while(q--)
{
int x1,x2,y1,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
printf("%d\n",(s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]));
}
return 0;
}
一维差分
#include<iostream>
using namespace std;
const int N=100010;
int a[N],b[N];
void insert(int l,int r,int c)//构造差分数组,假设a数组都是0,然后将a[i]插入到区间[i,i]中
{//之所以这样可以构造成一个差分数组,很简单,手动模拟一边这个函数就行了,真的妙
b[l]+=c;
b[r+1]-=c;
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
insert(i,i,a[i]);//构造差分数组
}
while(m--)
{
int l,r,c;
cin>>l>>r>>c;
insert(l,r,c);
}
for(int i=1;i<=n;i++)
{
a[i]=a[i-1]+b[i];//将原数组还原回来,方法是求前缀和
cout<<a[i]<<" ";
}
return 0;
}
二维差分------差分矩阵
#include<iostream>
using namespace std;
const int N=1010;
int a[N][N],b[N][N];
void insert(int x1,int y1,int x2,int y2,int c)//类似二维前缀和和一维的差分数组构造
{
b[x1][y1]+=c;
b[x2+1][y1]-=c;
b[x1][y2+1]-=c;
b[x2+1][y2+1]+=c;
}
int main()
{
int n,m,q;
cin>>n>>m>>q;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>a[i][j];
insert(i,j,i,j,a[i][j]);
}
while(q--)
{
int x1,y1,x2,y2, c;
cin>>x1>>y1>>x2>>y2>>c;
insert(x1,y1,x2,y2,c);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
b[i][j]=b[i][j-1]+b[i-1][j]-b[i-1][j-1]+b[i][j];//求前缀和,将答案还原出来
cout<<b[i][j]<<" ";
}
cout<<endl;
}
}
这篇博客详细介绍了如何使用一维和二维前缀和解决数集求和问题,并探讨了一维差分和二维差分矩阵的构造及它们在数据更新和还原原序列中的应用。通过实例展示了如何处理边界问题并高效计算子序列和。

被折叠的 条评论
为什么被折叠?



