前言
在科技的浪潮中,人工智能 (AI) 作为一股不可阻挡的力量,持续推动着社会与科技的进步。本博客旨在深入剖析人工智能及其核心领域——神经网络、自然语言处理、统计语言模型、以及大规模语言模型——的演进历程,以专业的视角展现这一领域的辉煌成就与未来展望。
人工智能的发展史,从早期的符号主义、连接主义到如今的深度学习,人工智能的每一次飞跃都离不开算法创新、计算能力提升及数据资源的丰富。神经网络作为人工智能的重要分支,其发展历程尤为引人注目。从最初的简单感知机到如今的深度神经网络,神经网络不仅在结构上变得更加复杂,还在性能上实现了质的飞跃,为人工智能的广泛应用奠定了坚实基础。
自然语言处理是人工智能的重要应用方向之一。从基于规则的语法分析到统计语言模型的广泛应用,再到深度学习在自然语言处理中的突破性进展,自然语言处理技术不断突破瓶颈,实现了从简单文本处理到复杂语义理解的跨越。统计语言模型作为自然语言处理的重要工具,其发展历程也是技术不断演进和优化的过程。
近年来,大规模语言模型的出现更是将人工智能推向了新的高度。通过在大规模数据集上进行预训练,大模型掌握了丰富的语言知识和常识推理能力,为自然语言理解、机器翻译、智能问答等多个领域带来了革命性的变化。大模型的成功应用,不仅展示了人工智能的无限潜力,也为未来的智能应用提供了广阔的想象空间。
本博客将逐一梳理这些领域的发展历程,探讨关键技术的演进轨迹,分析成功案例的背后逻辑,并展望未来的发展趋势。
文章目录
- 前言
- 1.人工智能发展史
-
- 1.1推理期
- 1.2知识期
- 1.3学习期
- 1.4总结
- 2.神经网络的发展史
-
- 2.1模型提出
- 2.2冰河期
- 2.3反向传播算法引起的复兴
- 2.4流行度降低
- 在这里插入图片描述
- 2.5深度学习的崛起
- 3.NLP的发展历史
-
- 3.1起源
- 3.2基于规则
- 3.3基于统计
- 3.4深度学习和大数据驱动
- 4.统计语言模型的发展历程
-
- 4.1N-Gram模型
- 4.2Bag-of-Words模型
- 4.3分布式表示
- 4.4神经概率语言模型
- 4.5Word2Vec
- 4.6预训练语言模型
- 5.大模型时代的发展历史
-
- 5.1基础模型阶段
- 5.2能力探索阶段
- 5.3突破发展阶段
- 结尾
- 参考资料
1.人工智能发展史
以上是人工智能的发展史,大致脉络可以分为大致三个阶段:推理期、知识期和学习期,每一阶段都标志着该领域显著的进步与转型。
1.1推理期
1950年,图灵(Alan Turing) 的论文*《计算机器与智能》中提出了一个讨论,讨论了创造一种“智能机器的可能性”。这个测试就是著名的图灵测试:“一个人在不接触对方的情况下,通过一种特殊的方式和对方进行一系列问答。如果在相当长的时间内,他无法根据这些问题判断对方是人还是计算机,那么就可以认为这个计算机是智能的。”*
图灵测试是测试人工智能从哲学讨论到科学研究的一个重要因素,引导了人工智能的很多研究方向。在他定的大方向下,计算机要通过图灵测试,就必须要具备理解语言、学习、记忆、推理、决策的能力。
这样人工智能就延伸出了很多不同的字学科,比如机器感知(CV,语言信息处理)、学习(模式识别,机器学习,强化学习)、语言(NLP)、记忆(知识表示)、决策(规划、数据挖掘)等。以上都可以认为是人工智能的研究范畴。
图灵的工作通常被认为是现代人工智能的起点之一,因为他从理论上探讨了机器智能的可能性。
1956年达特茅斯会议(Dartmouth),是人工智能领域的又一个重要的里程碑,标志着人工智能正式作为一个独立的学科诞生。会议由约翰·麦卡锡(John McCarthy)和马文·明斯基(Marvin Minsky)组织,旨在探索机器模拟智能的可能性。(香农也在这次会议中)
约翰·麦卡锡提出了人工智能的定义:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。
该会议之后的十几年,被公认为是人工智能领域的黄金时期。在这一阶段,众多早期的研究者们纷纷投身于这一新兴领域,致力于通过逻辑演绎或事实归纳,提炼出一系列精妙的规则,以期为机器赋予智能。
然而,当时的研究者们对人工智能的发展前景持有过于乐观的态度。他们满怀信心地预言:“在未来的20年内,机器将能够胜任人类所能完成的一切工作。”这一宏伟的愿景,无疑激发了人们对人工智能的无限遐想与期待。
随着研究的不断深入,研究者们逐渐发现,这些基于简单逻辑和事实归纳的推理规则,在面对复杂多变的现实世界时,显得过于简陋和片面。这一发现,无疑给原本乐观的预期泼了一盆冷水,使得人工智能的研究陷入了前所未有的低谷。在这一困境中,许多项目的研究经费被大幅削减,人工智能领域的发展步伐也因此变得缓慢而艰难。然而,正是这些挫折与困境,促使研究者们开始重新审视和思考人工智能的发展方向与路径,为后续的突破与崛起奠定了坚实的基础。
1.2知识期
到了20世纪七十年代,研究者意识到了知识对于人工智能系统的重要性,特别是对于一些复杂的任务,需要专家来构建知识库。
这一时期出现了各种各样的专家系统(Exper System),并在特定的领域取得了很多成果。
专家系统可以简单理解为“知识库+推理机”,是一类具有专门的知识和经验的计算机智能程序系统。专家系统一般采用知识表示和知识推理等技术来完成通常由领域专家才能解决的问题,因此也被称为基于知识的系统。
一个专家系统必须具备三要素:
1)领域专家知识;2)模拟专家思维;3)达到专家级水平
1.3学习期
图中的最后阶段,1985年随着神经网络的崛起(反向传播算法应用到了神经网络中),人工智能步入了学习期。对于人类的很多智能行为,我们很难知道其中的原理,也无法描述智能行为背后的“知识”。因此,研究者开始将研究重点转向让计算机从数据中自己学习。
机器学习(Machine Learning,ML)就是这样的方法。他的主要目的是设计和分析一些学习算法,让计算机可以从数据(经验)中自动分析并获得规律,之后利用学习到的规律对未知数据进行预测,从而帮助人们完成一些特定任务。
1.4总结
在人工智能发展了60多年后,机器虽然可以在某些方面超越人类,但想让机器真正通过图灵测试,具备真正意义上的人类智能,这个目标看上去仍然遥遥无期。
2.神经网络的发展史
回顾历史,今天遍布开花的神经网络,并不是最近冒出来的新鲜玩意,而是名副其实的老古董。神经网络的发展大致经过以上五个阶段。
2.1模型提出
第一阶段为1943年~1969年,这是神经网络发展的第一个高潮。
在1943年,沃伦·麦卡洛克(Warren McCulloch) 和 沃尔特·皮茨(Walter Pitts) 在1943年发表了一篇论文,提出了人工神经网络的概念。这一工作实际上是在研究生物神经系统的基础上,构建出了一种可以进行逻辑计算的数学模型,称为“麦卡洛克-皮茨神经元(MP模型)”,它描述了简单神经元的工作方式。这个模型被认为是人工神经网络的雏形。
1948年,阿兰·图灵提出了一种“B型图灵机”,他可以基于Hebbian法则(简单来说就是,神经元同时活动,则它们的连接就会加强)来进行学习。
1951年,沃伦·麦卡洛克(Warren McCulloch) 和 沃尔特·皮茨(Walter Pitts)的学生 马文·明斯