- 博客(70)
- 收藏
- 关注
原创 雷达回波图光流法外推项目实战!
本文介绍了一个基于OpenCV的雷达回波图光流法外推工具,支持Farneback、Lucas-Kanade和DIS三种光流算法。该工具提供完整的评估体系(TS、POD、FAR等指标),可实现多步外推预测,并通过反向映射技术确保输出图像连续平滑。DIS算法表现最佳(TS评分0.936),推荐用于雷达图像处理。项目提供命令行和API两种调用方式,适用于气象预测等场景,要求输入为时间连续的同尺寸雷达图像,建议外推步数不超过3步以获得最佳效果。
2025-12-17 17:22:36
424
原创 【langchain-ai】专业智能体开发框架-deepagents
Deep Agents 是一个基于 LangGraph 构建的 Python 库,旨在解决传统 LLM 工具调用代理在处理长周期、复杂任务时表现"肤浅"的问题。它通过整合规划工具、子代理、文件系统访问和详细提示等功能,使代理能够更有效地处理长期复杂任务。该项目主要受 Claude Code 启发,并在其基础上进行了通用化改进。
2025-12-12 14:25:48
926
原创 【算法设计】GLM-4.5V模型架构和算法设计详解
架构层面:3D 卷积+RoPE 扩展,实现多模态输入的高效处理与时空感知。算法层面:三阶段训练闭环+RLCS 策略,兼顾跨域泛化能力与训练稳定性,GLM-4.5V 在 42 个基准测试中近全任务达到开源 SOTA,部分任务超越 Gemini-2.5-Flash。参考文献:不过看评分图感觉对自家模型没啥信心,106B模型对标的是千问72B.。。。但看好新出的这两大功能(摘自社区文档)图文交织内容生成(Interleaved Image-Text Content Generation)
2025-12-11 15:53:46
892
原创 图像序列预测有什么算法方案
图像序列预测是计算机视觉与时序分析交叉领域的核心任务,目标是根据历史连续图像帧(如视频片段、卫星影像序列、医学影像序列等),预测未来若干帧的图像内容。其核心挑战在于同时建模图像的(如物体形状、纹理)和(如物体运动、场景变化)。根据技术发展脉络,图像序列预测的算法方案可分为和三大类,其中深度学习方法是当前的主流方向。
2025-12-10 17:16:44
570
原创 什么是Qlora ? 消费级显卡微调大模型
QLORA()是一种高效的大模型微调技术,通过4位NormalFloat(NF4)量化(针对正态分布权重的信息最优格式)、双重量化(量化量化常量,平均每参数节省0.37位)和分页优化器(利用NVIDIA统一内存避免显存峰值)三大核心创新,将65B参数模型的微调显存需求从>780GB降至<48GB,同时完全匹配16位全参数微调的性能;基于QLORA训练的Guanaco模型。
2025-11-26 15:56:45
942
原创 VLA模型,下一个风口
在可预见的未来,会有与LLM同等的现象级的VLA通用模型出现,VLA 将推动智能机器人从 “工业专用” 走向 “家庭通用”,最终实现 “具身智能” 的终极目标 —— 机器人能像人类一样 “看、懂、做”,无缝融入物理世界与人类社会。
2025-11-14 15:15:05
644
原创 深度学习和高性能计算中的BF16和FP16是什么意思
简单来说,浮点数用类似科学计数法的方式来表示一个很大或很小的数字。符号位:表示正负。指数位:表示数值的规模(例如,10的几次方)。尾数位:表示数值的精度(例如,1.234…)。FP16和BF16的区别就在于如何分配这16个比特(位)给这三个部分。特性FP16(半精度)BF16(脑浮点数)FP32(单精度)总位数16位16位32位符号位1位1位1位指数位5位8位8位尾数位10位7位23位动态范围较小(±65k)大(与FP32相同)大(±3.4e³⁸)精度较高较低高主要应用。
2025-10-27 15:59:38
747
原创 进程占用IO资源过多被系统KILL【排查与解决方案】
先优化进程本身(减少IO消耗)→ 再系统限制(避免独占)→ 最后硬件升级(提升承载)。核心是“从源头降低IO需求”,而非单纯限制,这样既能解决kill问题,又不影响业务性能。要不要我帮你整理一份IO问题诊断与优化的命令清单?包含常用工具的关键命令和参数,方便你直接执行排查。
2025-10-23 11:35:36
959
原创 超级好用的python的高级异步执行库concurrent 及最佳实践 !!
是 Python 的标准库,提供了高级的异步执行接口,用于实现并行计算。和。
2025-10-11 14:24:02
303
原创 LLVM(Low Level Virtual Machine)介绍
名称来源:最初代表"Low Level Virtual Machine",但现在已不再强调这个全称核心思想:提供模块化、可重用的编译器和工具链组件创始:由Chris Lattner在伊利诺伊大学香槟分校发起,现在由LLVM基金会管理模块化:可以单独使用各个组件可重用性:新的语言可以复用现有的优化器和后端性能:产生高质量的机器代码工具支持:提供完整的工具链生态系统无论是开发新的编程语言,还是进行代码分析、优化,或是构建开发工具,LLVM都提供了强大的基础设施支持。
2025-10-10 17:22:18
836
原创 浅谈深度学习中的L2归一化(L2 Normalization)
对于一个d维向量 ( \mathbf{x} = [x_1, x_2, …L2范数(L2 Norm):向量各元素的平方和的平方根,公式为:L2归一化:将向量每个元素除以其L2范数,得到归一化后的向量 ( \hat{\mathbf{x}} ),公式为:此时,( |\hat{\mathbf{x}}|_2 = 1 ),即向量被“标准化”到单位长度。
2025-08-12 09:54:46
1128
原创 初步认识AMSU-A/B、HIRS-3/4、MHS、ATMS、GOES
这些都是气象卫星上搭载的或,主要用于获取大气、地表的温度、湿度、辐射等观测数据,是数值天气预报、气候监测的重要数据源。
2025-08-08 17:51:21
579
原创 AlphaEarth模型架构梳理及借鉴哪些深度学习领域方面的思想
谷歌Earth AI 模型alpha earth的模型架构介绍及思想借鉴,对深度学习建模带来深刻启发。
2025-08-06 18:18:38
1760
原创 如何学习跨模态对齐(尤其是 CLIP 思想)
本文系统介绍了跨模态对齐(尤其是CLIP模型)的学习路径。首先需要掌握深度学习、CV/NLP基础及对比学习原理。然后深入理解CLIP的核心思想:通过对比学习将图像和文本映射到同一语义空间,实现图文匹配。建议通过实践调用预训练CLIP模型或复现简化版来加深理解。最后,可扩展学习CLIP的改进模型如ALBEF、BLIP等,了解从独立编码到交互编码的演进。学习资源包括原始论文、代码库及相关课程。整体路径为:基础知识→CLIP原理→实践应用→前沿扩展。
2025-08-06 17:50:06
926
原创 pytorch的自定义 CUDA 扩展怎么学习
学习 PyTorch 自定义 CUDA 扩展可分为三个阶段: 基础准备:掌握 PyTorch 张量操作、CUDA 编程基础(核函数、线程结构)及 C++/Python 交互(pybind11); 入门实践:通过官方教程实现简单扩展(如向量加法),熟悉 CUDA 核函数编写、pybind11 绑定及编译流程(setup.py); 进阶优化:学习自动求导实现、性能调优(共享内存/线程配置)并参考开源项目(如 DCNv2)。关键点包括正确处理设备内存、优化编译选项及使用调试工具(cuda-memcheck)。
2025-07-31 13:46:31
1081
1
原创 热带气旋【CH报文数据插值】中央气象台-台风路径数据每小时插值
将3小时间隔的中央气象台台风报文数据插值成每小时的报文数据,生成新的每小时的报文数据文件,格式不变。
2025-04-25 18:29:14
335
原创 在数据集上通过聚类实现特征降维
以下是代码讲解:1.导入numpy库和机器学习库的数据集、聚类算法模块2.加载手写数字数据集这行代码从 sklearn.datasets 模块中加载了手写数字数据集,该数据集包含8x8像素的灰度图像和对应的标签(0到9)。digits.images 是一个形状为 (1797, 8, 8) 的数组,其中 1797 是样本数量,每个样本是一个 8x8 的灰度图像。这行代码将每个 8x8 的图像展平成一个长度为64的一维向量,因此 X 的形状变为 (1797, 64)。这里创建了一个 Featur
2025-03-01 22:50:20
565
原创 python代码制作数据集的测试和数据质量检测思路
本文指的数据集为通用数据集,并不单是给机器学习领域使用。包含科研和工业领域需要自己制作数据集的。首先,在制作大型数据集时,代码错误和数据问题可能会非常复杂。前期逻辑总是简单的,库库一顿写,等排查的时候两眼无泪。后期慢慢摸排和检查的时候不断完善代码,前期代码主要是完成功能,后期是增加维护性和检测性。这部分工作其实前期可以考虑进去。以下提供一些血泪经验。
2024-11-23 20:22:17
595
原创 python程序对服务器cpu和内存资源占用的管理。
cgroups(控制组)是一种Linux内核功能,用于限制、记录和隔离进程组的资源使用(如CPU、内存、磁盘I/O等)。在服务器上部署了一套目标检测的程序,做成while true 的轮询检测数据更新的定时任务。所以寻思给程序加个资源占用的限制,跑慢一点没关系。服务器上设置则更适合于生产环境,因为它利用了操作系统提供的资源管理工具,更加灵活和强大。如果你的Python程序是通过systemd管理的,可以在服务文件中设置资源限制。代码中设置适用于需要更细粒度的控制,并且不依赖于操作系统特性的情况。
2024-11-15 11:40:44
980
原创 解决 ValueError: did not find HDF5 headers----安装netCDF4报错
报错说是hdf5找不到,按照这个思路搞了半天都没搞好。后来换了一个安装命令。
2024-09-25 13:21:57
1502
6
原创 用python+vue实现一个计算页面
要实现一个计算器页面,我们需要分别创建前端和后端部分。前端使用 Vue.js 框架,后端使用 Python 的 Flask 框架。
2024-06-12 13:58:51
776
1
原创 笔记2024
pip源][docker]查看镜像:docker psbuild:导出父镜像(本地192.100.30.208 root/admin):导入父镜像:拉取代码:构建镜像:在代码所在目录,前提是有Dockerfile文件。
2024-05-10 17:07:18
1062
1
原创 时间步长问题。tensorflow训练lstm时序模型,输出层实际输出维度和期待维度不一致
input_shape填两个参数值,第一个值代表指定的时间步长。后来对比了以前跑过的文件。发现LSTM少定义一个参数。输入y 维度(2250,) 和 (2250,1)但模型预测出的结果维度都是(2250,48,1)模型预测值维度为(2250,1)但结果跑出来的输出维度每次都是三维的。输入x维度(2250,48,2)我就很纳闷= =!第二个值是特征数目。
2024-04-20 13:27:21
680
原创 解决 pandas concat | ValueError: cannot insert,already exists
报错原因:索引数据在原表中已经存在,reset_index函数默认重置索引的时候会把索引数据放回表里。如果已经存在就会报错。只需要添加drop参数即可。
2024-04-01 18:14:24
2129
原创 重采样的常用算法resample
三次样条插值(Cubic Spline Interpolation):通过构建一个三次多项式函数来拟合已知数据点,并使用该函数来计算新数据点的值。线性插值(Linear Interpolation):通过在两个已知数据点之间插入新的数据点,使得新数据点的值在这两个已知数据点之间线性分布。最近邻插值(Nearest-neighbor Interpolation):将新数据点的值设置为距离最近的已知数据点的值。这种方法适用于数据变化较为剧烈的情况,但可能会导致数据的突变。
2024-03-26 15:30:46
2740
原创 gradio运行示例及解决gradio运行报错:UnicodeDecodeError:‘gbk‘ codec can‘t decode byte 0xb2 in position 1972
解决gradio报错问题
2024-03-21 10:34:37
2373
卫星文件命名规则说明文档
2024-12-12
2023年热带气旋/台风最佳路径数据集
2024-10-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅