B站 刘二大人 传送门 卷积神经网络(基础篇)
课件链接:https://pan.baidu.com/s/1vZ27gKp8Pl-qICn_p2PaSw
提取码:cxe4
本节把网络换成了简单的卷积神经网络,对于初学者搭建简单卷积网络还是挺有帮助的,另外加入了GPU的使用,其实很简单,两三句话把数据加载到GPU上就行,不过要先安装符合电脑版本的cuda才可以运行。
具体看老师课程,这里主要放代码。
用GPU运行2分半就完事了,用CPU整个过程也在10分钟内完成。只有4行GPU代码,文中有注释,不能用GPU的话把那四句代码注释掉就可以了,分别在38、39、50、77行。
下面是运行输出和绘制的曲线图。
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import matplotlib.pyplot as plt
import time
import datetime
batch_size =64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
#将原始像素数据归一到(0,1)中 并基于均值0.1307和标准差0.3081来对数据进行标准化处理
train_dataset = datasets.MNIST(root='D:\Code\Pytorch exercise/dataset/mnist', train=True, download=True,transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
#(下载)加载训练集,之后进行batch分组
test_dataset = datasets.MNIST(root='D:\Code\Pytorch exercise/dataset/mnist', train=False,download=True,transform=transform)
test_loader = DataLoader(test_dataset,shuffle