Pytorch深度学习实践第十讲 卷积神经网络(基础篇)

本篇博客介绍了刘二大人在B站的卷积神经网络基础课程,适合初学者。内容包括如何使用Pytorch构建简单的卷积神经网络,并讲解了如何利用GPU加速训练。通过4行代码实现GPU运行,CPU训练也在10分钟内完成。博客附有运行结果和训练曲线图。
摘要由CSDN通过智能技术生成

B站 刘二大人 传送门 卷积神经网络(基础篇)

	课件链接:https://pan.baidu.com/s/1vZ27gKp8Pl-qICn_p2PaSw
	提取码:cxe4

本节把网络换成了简单的卷积神经网络,对于初学者搭建简单卷积网络还是挺有帮助的,另外加入了GPU的使用,其实很简单,两三句话把数据加载到GPU上就行,不过要先安装符合电脑版本的cuda才可以运行。
具体看老师课程,这里主要放代码。

用GPU运行2分半就完事了,用CPU整个过程也在10分钟内完成。只有4行GPU代码,文中有注释,不能用GPU的话把那四句代码注释掉就可以了,分别在38、39、50、77行。
下面是运行输出和绘制的曲线图。
在这里插入图片描述
在这里插入图片描述

import torch
from  torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import matplotlib.pyplot as plt
import time
import datetime

batch_size =64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
#将原始像素数据归一到(01)中 并基于均值0.1307和标准差0.3081来对数据进行标准化处理

train_dataset = datasets.MNIST(root='D:\Code\Pytorch exercise/dataset/mnist', train=True, download=True,transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
#(下载)加载训练集,之后进行batch分组
test_dataset = datasets.MNIST(root='D:\Code\Pytorch exercise/dataset/mnist', train=False,download=True,transform=transform)
test_loader = DataLoader(test_dataset,shuffle
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值