决策理论的基本概念

决策理论探讨了如何在概率模型下进行决策,区分了客观未知与主观未知事件。文章通过彩票的例子解释了概率分布的概念,其中彩票代表可能的结果和其对应概率。还介绍了决策者在知晓特定事件后对不同彩票的选择偏好,以及如何构建复合彩票。
摘要由CSDN通过智能技术生成

1.2 决策理论的基本概念

客观未知

概率模型适合于描述报酬依赖于有客观明显概率的事件(比如抛硬币,转轮盘等)

主观未知

概率模型适合于描述报酬依赖于不明显明显概率的事件(比如股市,赛马等)

基本符号

对于有限集合,我们用 Z 表示用 Δ ( Z ) \Delta(Z) Δ(Z) 表示集合 Z 的概率分布集合 即
Δ Z = { q : Z → R ∣ ∑ y ∈ Z q ( y ) = 1 且 q ( z ) ⩾ 0 , ∀ z ∈ Z } \Delta Z = \{q:Z\to R \mid \sum_{y\in Z}q(y) = 1 且 q(z) \geqslant 0, \forall z\isin Z\} ΔZ={ q:ZRyZq(y)=1q(z)0,zZ}
(按照常规的集合记号,上述大括号中的 “ ∣ \mid ” 表示“满足···的条件”)

以买彩票为例子

  1. X 表示由决策者最终可能获得的彩金所组成的集合
  2. Ω \varOmega Ω 表示可能的状态所组成的集合,其中之一是世界真实的状态
  3. 假设 X Ω \varOmega Ω 都是有限集合
  4. 将彩票定义为某个函数f,对 X 中的每个彩金 x 和 Ω \varOmega Ω 中的每一个状态
    f 都给出一个非负实数
    f ( x ∣ t ) f(x\mid t) f(xt)
    使得对 Ω \varOmega Ω中的每一个t都有
    ∑ x ∈ X f ( x ∣ t ) = 1 \sum_{x\in X}f(x\mid t)=1 xXf(xt)=1
  5. L表示由所有这样的彩票所组成的集合,就是
    L = { f :
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值