1.2 决策理论的基本概念
客观未知
概率模型适合于描述报酬依赖于有客观明显概率的事件(比如抛硬币,转轮盘等)
主观未知
概率模型适合于描述报酬依赖于不明显明显概率的事件(比如股市,赛马等)
基本符号
对于有限集合,我们用 Z 表示用 Δ ( Z ) \Delta(Z) Δ(Z) 表示集合 Z 的概率分布集合 即
Δ Z = { q : Z → R ∣ ∑ y ∈ Z q ( y ) = 1 且 q ( z ) ⩾ 0 , ∀ z ∈ Z } \Delta Z = \{q:Z\to R \mid \sum_{y\in Z}q(y) = 1 且 q(z) \geqslant 0, \forall z\isin Z\} ΔZ={
q:Z→R∣y∈Z∑q(y)=1且q(z)⩾0,∀z∈Z}
(按照常规的集合记号,上述大括号中的 “ ∣ \mid ∣” 表示“满足···的条件”)
以买彩票为例子
- 令 X 表示由决策者最终可能获得的彩金所组成的集合
- 令 Ω \varOmega Ω 表示可能的状态所组成的集合,其中之一是世界真实的状态
- 假设 X 和 Ω \varOmega Ω 都是有限集合
- 将彩票定义为某个函数f,对 X 中的每个彩金 x 和 Ω \varOmega Ω 中的每一个状态
f 都给出一个非负实数
f ( x ∣ t ) f(x\mid t) f(x∣t)
使得对 Ω \varOmega Ω中的每一个t都有
∑ x ∈ X f ( x ∣ t ) = 1 \sum_{x\in X}f(x\mid t)=1 x∈X∑f(x∣t)=1 - 令L表示由所有这样的彩票所组成的集合,就是
L = { f :