Spring全家桶面试题(四)之SpringCloud

十、微服务

88. 微服务架构的优缺点

  1. 演变而来(从单体应用演变过来)
  2. 初期评估起手就上微服务

1、分工协作

单体:影响开发效率,发布和迭代性差;项目启动慢,每个人对整体的项目都要有所把握;业务缩减后如果语言不一致开发人员面临流失。
拆分:提高开发效率和敏捷性ꞏ;单个服务启动快, 专人处理专事专注自己的服务; 充分利用项目开发人员
(哪怕是不同的语言不同框架,不同存储技术,也可以)

2、并发能力

单体:整体集群,易造成系统资源浪费;之前下单功能要去集群无法准确评测最大并发量, 因为所有的功能都在一起,无法准确预估扩容的服务器。
拆分:服务集群,充分利用服务器资源;现在只需要针对下单服务进行压测就可以得到,下单功能具体能承受的并发量最高水位,从而更准确的进行扩容。

3、维护能力(维护困难)

单体:随着业务量增加,应用慢慢膨胀,后续可能会变得牵一发而动全身,难以维护。
拆分:根据功能垂直拆分,责任更加分明,维护更加精准。

单体:单点故障,一个功能OOM导致整个应用都不可用
拆分:弱依赖的服务出现故障,可以进行熔断(隔离) 依然不影响主业务正常使用

单体:难以技术升级
拆分:新的服务采用任意新技术(技术多样性)

4、缺点

分布式
分布式系统较难编程,因为远程调用速度很慢,并且总是面临失败的风险。对于开发人员的技术要求更高
最终一致性
对于分布式系统而言,保持强一致性非常困难,这意味着每个人都必须管理最终一致性。
运维复杂性
微服务必定带来开发、上线、运维的复杂度的提高,如果说单体应用复杂度为 10,实施了微服务后的复杂度将是 100,配备了相应的工具和平台后,可以将复杂度降低到 50,但仍然比单体复杂的多。
重复劳动
在很多服务中可能都会使用到同一个功能,而这一功能点没有足够大到提供一个服务的程度,这个时候可能不同的服务团队都会单独开发这一功能,重复的业务逻辑,这违背了良好的软件工程中的很多原则。

89. SOA、分布式、微服务之间有什么关系和区别?

1、分布式架构是指将单体架构中的各个部分拆分,然后部署不同的机器或进程中去,SOA和微服务基本上都是分布式架构的
2、SOA是一种面向服务的架构,系统的所有服务都注册在总线上,当调用服务时,从总线上查找服务信息,然后调用
3、微服务是一种更彻底的面向服务的架构,将系统中各个功能个体抽成一个个小的应用程序,基本保持一个应用对应的一个服务的架构

90. 怎么拆分微服务、拆分时机是什么?

怎么拆
1、高内聚低耦合,职责单一,服务粒度适中,服务不要太细(有的团队甚至一个接口一个服务,一个表一个服务)
2、以业务模型切入:比如产品,用户,订单为一个模型来切入)
3、演进式拆分:刚开始不要划分太细,可以随着迭代过程来逐步优化。

微服务 1.0,仅使用注册发现,基于 SpringCloud 或者 Dubbo 进行开发,目前意图实施微服务的传统企业大部分处于这个阶段,或者正从单体应用,向这个阶段过渡,处于 0.5 的阶段;
微服务 2.0,使用了熔断,限流,降级等服务治理策略,并配备完整微服务工具和平台,目前大部分互联网企业处于这个阶段。传统企业中的领头羊,在做互联网转型的过程中,正在向这个阶段过渡,处于 1.5 的阶段;
微服务 3.0,Service Mesh 将服务治理作为通用组件,下沉到平台层实现,使得应用层仅仅关注业务逻辑,平台层可以根据业务监控自动调度和参数调整,实现 AIOps 和智能调度。目前一线互联网公司在进行这方面的尝试

拆分时机:
业务量足够大,足够成本(投入成本、时间成本)
首先,如果是预估到业务在飞速增长,那就别犹豫,一定要提前考虑微服务的拆分。
其次,如果在设计架构的时候,发现需要很多异构的技术栈,那也要考虑下微服务。
最后,如果公司技术基础设施非常完备,对应的业务起初就设计的非常复杂,那么也别犹豫,起手就上微服务。

91. Spring Cloud有哪些常用组件,作用是什么?

在这里插入图片描述注册中心:管理服务
负载均衡:客户端的负载均衡器
服务调用:使远程服务调用更加优雅
配置中心:管理服务的配置
服务熔断:保证应用高可用,防止出现服务雪崩,防止激增流量打垮冷系统…
分布式事务:Seata
网关:为客户端提供统一的服务,一些跟业务本身功能无关的公共逻辑都可以放在网关实现:鉴权、日志、限流、跨域、路由转发…
链路追踪:实时追踪服务的监控状况,协助快速恢复

92. 注册中心的原理是什么?

服务注册: 当服务启动,通过Rest请求的方式向Nacos Server注册自己的服务
服务心跳:Nacos Client 会维护一个定时心跳持续通知Nacos Server , 默认5s一次, 如果nacos Client超过了15秒没
有发送心跳,Nacos Server会将服务健康状态设置false(拉取的时候会忽略),如果nacos Client超过了30 秒没有发送心跳,Nacos Server剔除服务。
服务发现:Nacose Client 会有一个定时任务,实时去Nacos Server 拉取健康服务列表
服务停止: Nacose Client 会主动通过Rest请求Nacos Server 发送一个注销的请求

93. 谈谈配置中心?

在这里插入图片描述集中管理服务的配置:提高维护性、时效性、安全性

有哪些东西可以作为配置?
比方说,数据库连接Url,缓存连接url字符串,数据库的用户名,密码都可以作为配置的字符串,除此之外,还有一些可以动态调整的参数,比方说,客户端的超时设置限流规则和降级开关,流量的动态调度,比方说某个功能只是针对某个地区用户,还有某个功能只在大促的时段开放,如果这种需要通过静态的方式去配置或者发布的方式去配置,那么响应速度是非常慢,可能对业务存在风险,如果有一套集中式的配置中心,只需要相关人员在配置中心动态去调整参数,就基本上可以实时或准实时去调整相关对应的业务。所以配置中心在微服务中算是一个举足轻重的组件。

推还是拉

现在我们了解了 Nacos 的配置管理的功能了,但是有一个问题我们需要弄明白,那就是 Nacos 客户端是怎么实时获取到 Nacos 服务端的最新数据的。
其实客户端和服务端之间的数据交互,无外乎两种情况:

  • 服务端推数据给客户端
  • 客户端从服务端拉数据

那到底是推还是拉呢,从 Nacos 客户端通过 Listener 来接收最新数据进行分析
在这里插入图片描述原理
Nacos 服务端创建了相关的配置项后,客户端就可以进行监听了。
客户端是通过一个定时任务来检查自己监听的配置项的数据的,当CacheData 的 md5 属性的值与配置中心的md5的属性的值不一样时,则认为服务端的数据发生变化,客户端将会获取到最新的数据,并将最新的数据保存在一个 CacheData 对象中,然后会重新计算 CacheData 的 md5 属性的值,一旦CacheData 的值发生变化,此时就会对该CacheData 所绑定的 Listener 触发receiveConfigInfo(接收配置信息) 回调。

拉的优势
客户端拉取服务端的数据与服务端推送数据给客户端相比,优势在哪呢,为什么 Nacos 不设计成主动推送数据,而是要客户端去拉取呢?
如果用推的方式,服务端需要维持与客户端的长连接,这样的话需要耗费大量的资源,并且还需要考虑连接的有效性,例如需要通过心跳
来维持两者之间的连接。而用拉的方式,客户端只需要通过一个无状态的 http 请求即可获取到服务端的数据。

94. 说说服务网关可以做什么?

在这里插入图片描述
面对互联网复杂的业务系统,基本可以将服务网关分成两类:流量网关和业务网关。
流量网关:跟具体的后端业务系统和服务完全无关的部分,比如安全策略、全局性流控策略、流量分发策略、跨域等。
业务网关:针对具体的后端业务系统,或者是服务和业务有一定关联性的部分,并且一般被直接部署在业务服务的前面。业务网关一
般部署在流量网关之后,业务系统之前,比流量网关更靠近系统。我们大部分情况下说的 API 网关,狭义上指的是业务网关。并且如
果系统的规模不大,我们也会将两者合二为一,使用一个网关来处理所有的工作

95.什么是服务雪崩?什么是服务限流?

服务雪崩效应: 因服务提供者的不可用导致服务调用者(大量线程阻塞,直至服务被拖垮)的不可用,并将不可用逐渐放大的过程,就叫服务雪崩效应

解决方式

  • 通过熔断机制,当一个服务挂了,被影响的服务能够及时熔断,使用 Fallback 数据保证流程在非关键服务不可用的情况下,仍然可以进行。
  • 通过线程池和消息队列机制实现异步化,允许服务快速失败,当一个服务因为过慢而阻塞,被影响服务可以在超时后快速失败,不会影响整个调用链路。

服务限流
是指在高并发请求下,为了保护系统,可以对访问服务的请求进行数量上的限制,从而防止系统不被大量请求压垮,在秒杀中,限流是非
常重要的。

96. 什么是服务熔断?什么是服务降级?区别是什么?

1服务熔断(终止交易),当服务A调用的某个服务B不可用时,上游服务A为了保证自己不受影响,及时切断与服务B的通讯。以防服务雪
崩。 防止服务雪崩一种措施
2.服务降级(执行B计划):提前预想好另外一种兜底措施, 可以进行后期补救。 直到服务B恢复,再恢复和B服务的正常通讯。是当被调用服务不可用时的一种兜底措施

98. 你的微服务项目出了异常怎样更快速的定位

利用服务监控工具、链路追踪工具查出出问题的具体模块,然后根据日志再详细排查。

99. Ribbon说说有哪些负载均衡策略

RandomRule 随机选择一个服务实例
RoundRobinRule 轮询负载均衡策略
RetryRule 在轮询的基础上进行重试
WeightedResponseTimeRule 如果一个服务的平均响应时间越短则权重越大,那么该服务实例被选中执行任务的概率也就越大。
BestAvailableRule 过滤掉失效的服务实例的功能,然后顺便找出并发请求最小的服务实例来使用
ZoneAvoidanceRule 默认规则,结合所在区域再进行轮询

100.你项目哪些场景用到了限流、降级?怎么配的?

服务降级的预案
在进行降级之前要对系统进行梳理,提前将一些 不重要 或 不紧急 的服务(弱依赖)或任务进行服务的 延迟使用 或 暂停使用。 (比如积分)
看看哪些服务是必须誓死保护,哪些系统是能够丢卒保帅;具体可以参考日志级别设置预案:

一般:有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
错误:可用率低于90%,或者连接池被占用满了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降
级;
严重错误:因为特殊原因数据错误了,此时需要紧急人工降级

测试会提供准确的数据;
自己算: 二八法则

QPS = 并发量 / 平均响应时间
并发量 = QPS * 平均响应时间
根据以上计算关系,我们来预估下单日访问量在 1000W 需要多大的QPS来支持:
通常情况下,80% 的访问量集中在 20%的时间,算一下这 1000w pv实际需要机器达到多少qps才能满足,
qps = (1000w * 0.8) / (24 * 3600 * 0.2)
qps = 462.9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值