- 博客(6)
- 收藏
- 关注
原创 学习笔记|颜色空间(RGB、HSV)
随着人类对大自然色彩的不断探索,以及现代传感器和计算机技术的日益发展,人类已经能够收集、保存和计算各种彩色图像。为了更好的表达和存储各种颜色,学者们提出了各种不同类型的颜色空间,颜色空间的数学模型十分抽象,它通常由三个独立分量构成,三个变量相互结合组成一个立体空间。颜色空间模型包含色域中的全部颜色,是描述图像颜色信息的最佳模型工具。各个颜色空间模型对数字图像处理都有不同的效果,本文主要对低照度图像增强领域中常用的RGB和HSV颜色空间模型的基本理论做出详细介绍。
2023-07-12 14:51:27 776 1
原创 学习笔记|卷积神经网络
卷积神经网络是由生物学上的视觉皮层获得启发的,视觉皮层的小部分神经元细胞对特定的视觉特征敏感,例如一些神经元细胞只对色彩信息兴奋,一些神经元细胞只对水平边缘或者垂直边缘兴奋。Hubel 和 Wisesl 发现这些神经元细胞必须以柱状结构的形态排列,而且同时进行工作时才能产生视觉感知。这种在一个系统中由特定组件寻找特定特征的理念在机器学习中同样适用,这也是卷积神经网络的基础。卷积神经网络是根据模拟生物感知世界的特性而提出的一个模型,在卷积神经网络的发展历程中产生了许多的经典网络模型。
2023-07-11 19:08:00 299
原创 论文笔记|低照度图像增强-Attention Guided Low-light Image Enhancement with a Large Scale Low-light Dataset
论文介绍:一种新的基于多分支卷积神经网络的端到端注意力引导方法 1)提出了一个高保真低光图像模拟的完整管道,在此基础上构建了一个新的大规模配对低光图像数据集来支持弱光增强研究。 2)提出了一种注意力引导增强方法和相应的多分支网络架构。在ue-attention map和noise map的指导下,该方法同时有效地实现了弱光增强和去噪。 3)进行了综合实验,实验结果表明本文的方法大大优于最先进的方法。
2023-07-04 16:33:59 854
原创 论文笔记|低照度图像增强-R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network
论文介绍:1)基于Retinex的Real-low to Real-normal Network2)三个子网:Decom-Net、Denoise-Net、Relight-Net分别用于分解、去噪、对比度增强和细节保存3)收集了第一个大规模真实世界配对低/正常光图像数据集(LSRW 数据集)
2023-07-01 20:34:54 2193
原创 搭建Pytorch虚拟环境基础教程(Windous)
本文详细介绍了在Anaconda中配置Pytorch虚拟环境的全过程,并对在配置Python解释器时遇到的Conda executable is not found错误给出了解决方案。
2023-06-25 22:01:13 1648 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人