- 博客(3)
- 收藏
- 关注
原创 深入解析XGBoost——算法原理篇
XGBoost,大家都谓之比赛大杀器,凭借着效果好,速度快,支持不同基学习器和自定义损失函数等优点一路高歌猛进,根据Kaggle在2015年的统计,在29支冠军队中,有17支用的是XGBoost,其中有8支冠军队只用了XGBoost。但是(传奇的故事都有个但是),关于XGBoost的论文是在2016年才发表的,可见神器必有其非凡的经历。闲话少叙,开始正题。本文基于XGBoost作者陈天奇的文章:XGBoost: A Scalable Tree Boosting System,尝试解答XGBoost为什么具有
2021-06-27 22:18:00 358 1
原创 损失函数、代价函数、目标函数
Q:机器学习中的损失函数、代价函数、目标函数有什么联系和区别?A:在监督学习中,损失函数用来评估模型的预测值和真实值不一致的程度。简单理解损失函数、代价函数、目标函数有这样的区别:损失函数 ∣yi−f(xi)∣|y_i-f(x_i)|∣yi−f(xi)∣,一般是针对单个样本,算的是一个样本的误差代价函数 1N∑i=1N∣yi−f(xi)∣\frac{1}{N}\sum_{i=1}^{N}|y_i-f(x_i)|N1∑i=1N∣yi−f(xi)∣,一般是针对整个训练集上,是所有样本误差的平
2021-06-12 23:01:16 229 3
原创 非侵入式Self-attention多维信息融合
Bert模型自2018年提出至今依旧辉煌热度不减,其在自然语言领域取得的成绩非常注目。一些研究已经将Bert应用在了序列数据的处理上,比如序列推荐场景下。然而在推荐场景下除了item序列之外,还有存在与序列item相关的额外信息(如用户在item的驻留时长、item类型等),又因为Bert模型只使用一种token序列作为输入,所以如何将与token相关的额外信息融合到模型,以及融合模型是否能提升模型性能成为一个新的研究方向。Bert的强大是不能缺少的self-attention机制的贡献的。正是由于Sel
2021-06-12 22:58:59 546
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人