文献调研-根据单细胞数据构建细胞/肿瘤进化树

该研究聚焦于利用深度学习方法进行肿瘤进化树的拓扑结构推断。主要任务包括判断肿瘤进化的线性或分支结构、评估single-cell sequencing数据的冲突性以及学习构建完整的肿瘤进化过程。该工作为理解肿瘤演化进程提供了新的工具和方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文献调研-phylogeny inference based on single-cell RNA-seq

Tumor Phylogeny Topology Inference via Deep Learning

参考论文

Sadeqi Azer E, Haghir Ebrahimabadi M, Malikić S, Khardon R, Sahinalp SC. Tumor Phylogeny Topology Inference via Deep Learning. iScience. 2020;23(11):101655. Published 2020 Oct 7. doi:10.1016/j.isci.2020.101655

方法

主要解决3个问题:

  1. 判断肿瘤进化是线性结构或至少包含一个分支
  2. 判断给定single-cell sequencing是否是无冲突的,从而可以构建完美的进化树
  3. 学习构建完整的肿瘤进化树过程
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值