前言
鉴于目前在公司研究算法部分,进行yolo相关学习和学习中途的内容记录
当前研究目的:利用YOLO完成特定物体的识别与分割,所选版本为YOLOV8
学习内容大致如下:
1.环境构建
2.内容复现
3.新物体的内容标定
4.新内容训练
5.性能调优和结果显示
在学习的过程中会尝试补全和巩固一部分学过的内容,最好对应的记录,内容主要研究实际应用
以下所作内容需具备一定的配置环境,依照前文中环境构建的结构进行的配置,在使用如下内容时,均推荐使用管理员身份进行处理
常见的CV任务
四大基本任务
(a)图像分类(目标检测):一张图像中是否含某种物体
(b)物体定位(目标检测与目标识别):确定目标位置和所属类别。
(c)语义分割(目标分割和目标分类):对图像进行像素级分类,预测每个像素属于的类别,不区分个体;(所有的CUBE一个颜色)
(d)实例分割(目标分割和目标识别):定位图中每个物体,并进行像素级标注,区分不同个体;(CUBE都是不同颜色)
细节说明
目标检测(object detection)
除了要告诉输入图像中包含了哪类目前外,还要框出该目标的具体位置和大小(bounding boxes)
目标识别(objec recognition)
是指明一幅输入图像中包含的目标是谁。其输入为一幅图像在确定其类别的基础上,进一步确定这个目标是谁(比如:小明,短脚猫等)
目标分割(object segmentation)
目标分割是对目标进行像素级的目标检测,即不是用边框将目标框起来,而是需要知道哪个像素是不是属于目标的一部分
目标分类(object classification)
对于一幅图像(其中包含一个主要的对象),确定该幅图像是哪一个类别(比如:海滩,楼房)
打标工具选择
labelimg是一种矩形标注工具,常用于目标识别和目标检测,其标记数据输出为.xml和.txt
labelme是一种多边形标注工具,可以准确的将轮廓标注出来,常用于分割,其标记输出格式为json
labelImg的安装和使用
安装
在涉及上述中的图像分类,物体定位,实例分割等事项中,进行规则矩形分割可以进行labelImg的安装和使用。
github地址: