《二分查找原理》
/*
1、数组工具类:自己写的。不是SUN的。
2、关于查找算法中的:二分法查找。
10(下标0) 11 12 13 14 15 16 17 18 19 20(下标10) arr数组。
通过二分法查找,找出18这个元素的下标:
(0 + 10) / 2 --> 中间元素的下标: 5
拿着中间这个元素和目标要查找的元素进行对比:
中间元素是:arr[5] --> 15
15 < 18(被查找的元素)
被查找的元素18在目前中间元素15的右边。
所以开始元素的下标从0变成 5 + 1.
再重新计算一个中间元素的下标:
开始下标是:5 + 1
结束下标是:10
(6 + 10) / 2 --> 8
8下标对应的元素arr[8]是18
找到的中间元素正好和被找的的元素18相等,表示找到了:下标为8
二分法查找的终止条件:一直折半,直到中间的那个元素恰好是被查找的元素。
3、二分法查找算法是基于排序的基础之上。(没有排序的数据是无法查找的。)
*/
public class ArrayUtil {
public static void main(String[] args) {
int[] arr = {100,200,230,235,600,1000,2000,9999};
// 找出arr这个数组中200所在的下标。
// 调用方法
int index = binarySearch(arr, 230);
System.out.println(index == -1 ? "该元素不存在!" : "该元素下标" + index);
}
/**
* 从数组中查找目标元素的下标。
* @param arr 被查找的数组(这个必须是已经排序的。)
* @param dest 目标元素
* @return -1表示该元素不存在,其它表示返回该元素的下标。
*/
public static int binarySearch(int[] arr, int dest) {
// 开始下标
int begin = 0;
// 结束下标
int end = arr.length - 1;
// 开始元素的下标只要在结束元素下标的左边,就有机会继续循环。
while(begin <= end) {
// 中间元素下标
int mid = (begin + end) / 2;
if (arr[mid] == dest) {
return mid;
} else if (arr[mid] < dest) {
// 目标在“中间”的右边
// 开始元素下标需要发生变化(开始元素的下标需要重新赋值)
begin = mid + 1; // 一直增
} else {
// arr[mid] > dest
// 目标在“中间”的左边
// 修改结束元素的下标
end = mid - 1; // 一直减
}
}
return -1;
}
}