java代码篇---3.二分查找【2020】

《二分查找原理》

/*
1、数组工具类:自己写的。不是SUN的。

2、关于查找算法中的:二分法查找。
    10(下标0) 11 12 13 14 15 16 17 18 19 20(下标10)   arr数组。

    通过二分法查找,找出18这个元素的下标:
        (0 + 10) / 2 --> 中间元素的下标: 5

    拿着中间这个元素和目标要查找的元素进行对比:
        中间元素是:arr[5] --> 15
        15 < 18(被查找的元素)
        被查找的元素18在目前中间元素15的右边。
        所以开始元素的下标从0变成 5 + 1.

    再重新计算一个中间元素的下标:
        开始下标是:5 + 1
        结束下标是:10
        (6 + 10) / 2 --> 8

    8下标对应的元素arr[8]是18
        找到的中间元素正好和被找的的元素18相等,表示找到了:下标为8

    二分法查找的终止条件:一直折半,直到中间的那个元素恰好是被查找的元素。

3、二分法查找算法是基于排序的基础之上。(没有排序的数据是无法查找的。)

 */
public class ArrayUtil {
    public static void main(String[] args) {

        int[] arr = {100,200,230,235,600,1000,2000,9999};

        // 找出arr这个数组中200所在的下标。
        // 调用方法
        int index = binarySearch(arr, 230);
        System.out.println(index == -1 ? "该元素不存在!" : "该元素下标" + index);
    }

    /**
     * 从数组中查找目标元素的下标。
     * @param arr 被查找的数组(这个必须是已经排序的。)
     * @param dest 目标元素
     * @return -1表示该元素不存在,其它表示返回该元素的下标。
     */
    public static int binarySearch(int[] arr, int dest) {
        // 开始下标
        int begin = 0;
        // 结束下标
        int end = arr.length - 1;
        // 开始元素的下标只要在结束元素下标的左边,就有机会继续循环。
        while(begin <= end) {
            // 中间元素下标
            int mid = (begin + end) / 2;
            if (arr[mid] == dest) {
                return mid;
            } else if (arr[mid] < dest) {
                // 目标在“中间”的右边
                // 开始元素下标需要发生变化(开始元素的下标需要重新赋值)
                begin = mid + 1; // 一直增
            } else {
                // arr[mid] > dest
                // 目标在“中间”的左边
                // 修改结束元素的下标
                end = mid - 1; // 一直减
            }
        }
        return -1;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值