联想小新潮7000-13安装黑苹果笔记,无需无线网卡(无需U盘+win双系统+opencore)

听说苹果系统用来写代码舒服,就折腾了一下,幸好找到比较完美的EFI,并且我也懒得折腾那么多,安装系统不就是用来使用的嘛,所以就用恢复版镜像安装黑苹果,简单快捷,但有缺点,大佬勿喷

先说体验:基本完美

  • 无需无线网卡上网
  • 能调节亮度、声音
  • 充放电,电池图标显示正常
  • 蓝牙连耳机用不了,但无线鼠标可以,不想去找方法了,因为我平时基本不用

1.原版的EFI文件

【黑果小兵】Hackintosh黑苹果长期维护机型整理清单中的联想小新潮7000 14寸 efi

2我修改后的EFI

我的电脑调整后的EFI,在发布版那里
这个EFI在mac上修改需要用0.65版本的opencore configurator

3.视频教程

无需U盘windows环境下零基础黑苹果双系统安装完教程整版opencore bigsur 黑苹果恢复版本安装新手小白萌新入门级macos最新版本教程2021_哔哩哔哩_bilibili

4.使用恢复版镜像,自行百度,这个EFI我装Big Sur、High Sierra都可以,我的是这个版本

在这里插入图片描述

5.黑苹果教程网站:黑苹果屋、黑苹果星球…

6.MAC软件下载网站

image-20220210191503725

7.调整config.plist

  • 可能EFI拿来用后没有达到上面说的那么好,需要修改config.plist
  • 修改后开不了机的情况,莫慌,进入win系统或者PE系统,用DiskGenius打开ESP引导分区,替换备份好的config.plist即可

各类设置调整

ctrl c、ctrl v复制粘贴

image-20220102130319567

触摸板右键

image-20220112174636079

win磁盘无法写入

diskutil list

image-20220130190814015

创建挂载目录
mkdir ~/Desktop/Windows
卸载磁盘

sudo umount /dev/disk0s2

重新挂载

sudo mount_ntfs -o rw,nobrowse /dev/disk0s2 ~/Desktop/Windows

### 如何进行YOLOv11测试 为了执行YOLOv11模型的测试,需先加载预训练好的权重文件并设置好配置参数。具体操作如下: #### 加载YOLOv11模型与权重 通过Python脚本可以轻松完成这一过程。下面是一段用于初始化YOLOv11模型并将指定路径下的权重应用于该模型实例的代码片段。 ```python import torch from yolov11 import YOLOv11 # 假设yolov11.py定义了YOLOv11类 device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YOLOv11().to(device) # 加载预训练权重 weights_path = "path/to/your/yolov11_weights.pth" checkpoint = torch.load(weights_path, map_location=device) model.load_state_dict(checkpoint["state_dict"]) model.eval() ``` 这段代码实现了设备检测、创建YOLOv11对象以及加载保存有网络结构和参数信息的状态字典[^1]。 #### 执行推理预测 一旦完成了上述准备工作之后,则可以通过调用`infer()`方法来进行图像上的目标检测任务。此函数接收一张图片作为输入,并返回标注框及其对应的类别标签列表。 ```python from PIL import Image import numpy as np def infer(image_path): image = Image.open(image_path).convert('RGB') image_tensor = preprocess_image(image) # 预处理逻辑省略 with torch.no_grad(): predictions = model(image_tensor.unsqueeze(0).to(device)) boxes, scores, labels = postprocess_predictions(predictions) # 后处理逻辑省略 return boxes, scores, labels boxes, confidences, class_ids = infer("test.jpg") print(f"Detected objects: {class_ids}") for box in boxes: print(box.tolist()) ``` 在此基础上,还可以进一步优化用户体验,比如将这些功能集成到基于Streamlit框架构建的应用程序当中去,从而允许用户上传自己的照片并通过图形界面查看识别结果。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值