- 博客(27)
- 收藏
- 关注
原创 8. 自然语言处理NLP -GPT
概念说明GPT 是什么?生成式语言模型,基于 Transformer 解码器核心能力能写、能聊、能编、能想主要优势生成能力强,任务通用性强主要缺点可能胡说八道,缺乏可解释性适用场景写作、聊天、代码、摘要、翻译不适用场景高精度推理、事实核查、安全敏感任务GPT 是“作家”,BERT 是“读者”。你需要的是“理解” → 用 BERT;你需要的是“创作” → 用 GPT。“生、聊、创、快、错”生:生成文本聊:聊天对话创:创造内容快:速度快(相比传统方法)
2026-01-10 21:36:47
646
原创 6. 自然语言处理NLP - 迁移学习
🎯 “预训练是底子,微调是点睛,选对模型才不费劲。概念组件作用类比适合场景Pipeline一键推理自动售货机快速试用、DemoAutoModel自动加载模型智能快递员快速开发、微调具体模型类工厂工人研究、调试Tokenizer文本转数字摩斯电码机所有任务必备Datasets数据管理超市货架训练、评估补充点:fasttext工具包。
2026-01-09 20:57:42
677
原创 7. 自然语言处理NLP - Bert
1.BERT 是一个双向、基于 Transformer 的预训练语言模型,能深刻理解上下文。2.它通过“掩码预测”和“下一句判断”学会语言,再微调完成具体任务,实现“一次学习,处处可用”。3.它强大但不万能,适合高精度语义任务,但需权衡计算成本和实际需求。🎯 评价:“别迷信 BERT,但别忽视它。它不是终点,而是通往更好模型的跳板。概念Bert和GPT的一个简单对比图中表示的是Bert相比于GPT,它是一个双向的RNN结构。
2026-01-09 17:42:30
1011
原创 5. 自然语言处理NLP - Transformer
它是一个革命性的模型架构,靠“注意力机制”让 AI 更懂上下文。它快、准、强,是现代大模型(如 GPT、BERT)的基础。但它不是万能的——数据少、资源紧、任务简单时,别盲目堆它。🎯 一句口诀,记住它:“注意力在手,上下文我有;数据够大,才敢用它走。概念🔍 类比:想象你在读一本小说,想理解整段话的意思。你会先看每个词之间的关系(谁和谁有关?),再对每个词进行深入思考(这个词到底什么意思?
2026-01-08 08:44:55
1034
原创 4. 自然语言处理NLP - 注意力机制
Attention 不是一种“万能魔法”,而是一种“智能聚焦”的机制——它让模型学会在正确的时间,看正确的信息。✅ 它是为了解决“信息压缩瓶颈”而生:不再把整句塞进一个向量,而是动态查阅原始输入。✅ 它的核心是“相关性计算”:通过 Query-Key 匹配,给 Value 加权,形成上下文感知的表示。✅ 它推动了 NLP 的革命:从 Seq2Seq 到 Transformer,再到 BERT、GPT,Attention 是现代大模型的基石。
2025-12-29 21:10:42
880
原创 3.自然语言处理NLP - RNN及其变体
模型优点缺点适用范围RNN简单直观,适合短序列梯度消失,难学长期依赖简单 NLP 任务LSTM记忆能力强,适合长序列结构复杂,训练慢语音、翻译、时间序列GRU简洁高效,训练快稍弱于 LSTM快速原型、移动端RNN 是 NLP 的“起点”,教会我们如何处理序列。LSTM/GRU 是“进化版”,解决了长期依赖问题。但随着 Transformer 的崛起,RNN 已不再是主流架构。现在更多用于教学、理解序列建模思想,或特定小规模任务。
2025-12-28 23:50:45
601
原创 2.自然语言处理NLP - 文本预处理
使用用户自定义词典添加自定义词典后,jieba能够准确识别词典中出现的词汇,从而提升整体的识别准确率词典格式:每一行分三部分:词语、词频、词性,用空格隔开,顺序不可颠倒在项目根目录创建一个文件:userdict.txt ,内容如下:火锅底料 5 n我讲礼貌 6 n拿去比较 7 nz代码# 原始句子sentence = """老子吃火锅 你吃火锅底料 火锅底料对你笑呵呵 因为我讲礼貌 我讲礼貌狠货有好多 个人拿去比较 拿去比较"""# === 情况1:不使用自定义词典 ===
2025-12-24 16:46:08
889
原创 1.自然语言处理NLP - 入门
语言建模:预测下一个词(比如“今天天气很____”)词向量(Word Embedding):把词变成数学向量,让“猫”和“狗”靠得很近注意力机制(Attention):关注重要部分,忽略无关信息Transformer 架构:现代 NLP 的基石,支持并行计算预训练+微调:先用海量文本训练通用模型(如 BERT、GPT),再针对具体任务调整💡NLP 的本质是:将语言转化为可计算的形式它不是“让机器说话”,而是“让机器理解人类的意图”
2025-12-24 14:42:40
778
原创 5. 深度学习 - NLP入门-循环神经网络RNN
RNN是深度学习中处理序列数据的开山鼻祖,它首次赋予了神经网络“记忆”与“时间感知”的能力。虽然如今它已经被更先进的模型(如Transformer)超越,但它的思想依然深刻影响着AI的发展。你可以把RNN想象成一位经验丰富的老教师:他教出了许多优秀的学生(LSTM、GRU、Transformer),自己虽不再站在讲台中央,但他的教学理念仍被广泛传承。💡 小结:RNN是序列建模的“奠基人”,它教会我们如何让AI“记得过去”。虽然现在它更多出现在教科书中,但理解RNN,是通往现代AI世界的必经之路。概念。
2025-12-21 22:46:28
659
原创 4. 深度学习-CNN卷积神经网络
CNN是深度学习中最具影响力的模型之一,尤其在计算机视觉领域取得了革命性突破。它通过卷积和池化机制有效提取图像特征,具备良好的泛化能力和可解释性。然而,其应用范围受限于数据结构和任务需求。随着Transformer等新架构的发展,CNN正在与其他模型融合(如ViT+CNN),但仍保持重要地位。✅ 最终小结:CNN是处理图像类任务的强大工具,理解其原理有助于合理选择与优化模型;但需结合具体任务灵活选用,避免“过度使用”。
2025-12-18 20:56:14
942
原创 3.深度学习 - ANN神经网络
神经网络是一种基于连接主义原理的人工智能模型,通过调整权重来最小化预测误差。其基本单元是神经元,整体结构包括输入层、隐藏层和输出层。训练过程依赖反向传播算法(Backpropagation)和优化器(如SGD、Adam)更新参数。深度学习则是指包含多个隐藏层的神经网络,具备更强的特征表示能力。深度学习的成功源于数据、算力与算法三者的结合。它改变了计算机视觉、语音识别、自然语言处理等多个领域的格局,但也面临泛化能力、鲁棒性和可解释性等挑战。
2025-12-17 15:54:38
312
原创 1. 机器学习 - 入门
1)什么是机器学习(Machine Learning,简称 ML)是人工智能(Artificial Intelligence, AI)的一个重要分支,其核心思想是让计算机系统能够从数据中自动学习规律或模式,并在没有明确编程指令的情况下,对新数据做出预测或决策。2)为什么机器学习让我们能够利用数据,让计算机自己“学会”如何完成复杂的任务,而不是由人类程序员一步步地编写明确的指令。
2025-12-17 10:59:40
566
原创 2. 机器学习 - KNN算法
KNN是一种简单但强大的基础算法,具有无需训练、易于理解和实现的优点。它特别适合小规模、低维的数据集,尤其在分类任务中表现良好。然而,其计算开销随数据量增长而上升,且对噪声和异常值敏感。因此,在实际应用中需结合数据特点合理选用,并配合特征缩放、降维等预处理手段优化性能。📌 小结: KNN是“懒人算法”的代表——简单实用但需权衡效率与精度,适合作为入门和对比基准模型。概念主题关键点推荐使用场景距离计算曼哈顿、欧式、切比雪夫、闵可夫斯基聚类、相似度匹配特征预处理归一化 vs 标准化。
2025-12-10 08:38:12
727
原创 3. 机器学习-线性回归
线性回归是机器学习的基石之一,兼具实用性与教学价值。它在满足基本假设的前提下表现稳健,但面对复杂现实数据时可能力不从心。合理使用需结合数据探索、诊断检验(如残差分析)和模型对比。✅ 最终小结:线性回归是“简单但不简陋”的工具——用得好,事半功倍;用得不当,误导结论。始终先验证假设,再决定是否采用。概念。
2025-12-10 08:37:47
712
原创 2. 深度学习 - Pytorch
PyTorch是Meta开发的开源深度学习框架,以动态计算图和Python友好性著称。核心特性包括张量运算、自动微分、GPU加速和模块化设计,适合研究实验。相比TensorFlow,PyTorch更灵活易用,但生产部署能力稍弱。典型应用场景包括CV/NLP研究和原型开发,而在边缘设备部署或已有TF生态时可能不适用。安装可通过镜像源完成,支持CPU/GPU版本。张量操作是基础,支持从列表/Numpy创建、类型转换及特殊张量生成(零/单位/随机张量)。PyTorch已成为深度学习研究的主流工具,平衡了灵活性与性
2025-12-09 20:40:18
1025
原创 1. 深度学习 - 入门
深度学习是当前人工智能的重要支柱,尤其在感知类任务中表现卓越。它通过深度神经网络实现自动特征学习,推动了计算机视觉、自然语言处理等多个领域的突破。但其对数据、算力和调参的要求较高,需结合具体场景合理选择。概念✅ ANN 是起点,CNN 看图,RNN 记事,Transformer 全能,Diffusion 画画,GNN 理关系——它们都是“会学习的程序”,而深度学习就是让它们越来越聪明的方法。
2025-12-09 19:44:51
492
原创 4. 机器学习-逻辑回归
逻辑回归是一种用于二分类问题的监督学习算法,通过Sigmoid函数将线性输出映射为概率值。其优势在于模型简单、训练高效、可解释性强,并能输出概率结果,适用于风险评估、营销预测等线性可分场景。核心概念包括Sigmoid函数、极大似然估计和交叉熵损失优化。评估指标方面,混淆矩阵和ROC曲线/AUC能全面衡量模型性能,而准确率、精确率、召回率和F1-score则针对不同业务需求提供具体评估。虽然不适用于非线性问题或多分类任务,但作为基础分类算法,逻辑回归在需要快速部署和结果解释的场景中仍具有重要价值。
2025-12-07 11:22:53
584
原创 5. 机器学习-决策树
决策树是一种基于树形结构的监督学习算法,用于分类和回归任务。它通过递归选择最优特征进行分割,使子集尽可能"纯净",最终生成可解释的"如果-那么"规则。常见算法包括ID3、C4.5和CART,其中CART最为实用,支持分类/回归和剪枝。决策树优势在于可解释性强、无需数据预处理,但易过拟合。适用于需要模型透明度的场景,如医疗诊断;不推荐用于高维大数据或追求极致精度的任务。实际应用中常通过剪枝和集成方法(如随机森林)提升性能。决策树是现代机器学习的基础组件,特别适合快速原型
2025-12-06 11:56:37
849
原创 7. 机器学习-聚类算法
聚类算法是一种无监督学习方法,通过将相似样本分组来发现数据内在结构。常见算法包括K-Means、DBSCAN和层次聚类等,适用于客户细分、图像分割等场景。评估方法有肘部法、轮廓系数等指标。使用前需判断数据是否具有聚类结构,并注意其不适用情况(如已有明确标签或数据极度稀疏)。K-Means算法通过迭代更新质心实现聚类,但对初始值敏感且需预设簇数。聚类评估主要依赖内部指标,如SC轮廓系数衡量样本归属合理性,CH系数评估簇间分离性。
2025-12-06 09:14:11
585
原创 6. 机器学习-集成学习
集成学习是一种通过组合多个基学习器来构建更强模型的机器学习方法,主要包括Bagging、Boosting和Stacking等策略。Bagging通过并行训练多个独立模型降低方差,代表算法如随机森林;Boosting则串行训练模型,逐步修正误差降低偏差,典型算法包括AdaBoost、GBDT和XGBoost。其中XGBoost因其二阶优化、正则化和并行计算等优势成为竞赛和工业界首选。集成学习能显著提升模型精度和鲁棒性,但计算成本高且可解释性差,适用于数据量大、特征复杂的场景,在资源受限或需高解释性时应避免使用
2025-12-05 23:25:54
629
原创 Git初尝试
1)是什么Git 是一个分布式版本控制系统,主要用于跟踪和管理源代码和文件的变化历史。它是目前全球最流行的版本控制工具,由 Linus Torvalds(Linux 内核的创始人)于 2005 年创建。2)为什么总结: 只要文件会变动、多人会碰、历史有价值,就上 Git。概念图解不作展开验证安装基本命令命名规范主分支:main / master开发分支:develop功能分支:feature/*缺陷分支:bugfix/*紧急修复分支:hotfix/*发布分支:release/*测试分支:test/*
2025-12-03 10:45:44
410
原创 数据分析day19~day23
1)是什么从数据中提取有价值信息的过程2)为什么Java 和 Python 都可以用于数据分析,但它们在生态系统、语法简洁性、社区支持和适用场景等方面存在显著差异。以下是两者的详细对比:1.生态系统与库支持优势明显:Python 是当前数据分析领域的主流语言。核心库:Pandas:提供高性能的数据结构(如 DataFrame)和数据分析工具。NumPy:支持高效的数值计算。Matplotlib / Seaborn / Plotly:强大的数据可视化能力。
2025-11-19 16:33:22
546
原创 数据库day17~day18(施工ing...)
1)什么是数据库就是一个“电子记事本”,专门用来存数据、找数据、改数据,而且又快又不容易出错。2)为什么当你需要“安全、快速、准确、多人用、长期存”地管理数据时,数据库就是那个最靠谱的“智能账本”。3)概念~1.分类按数据模型分类关系型数据库、非关系型数据库按部署/架构分类单机数据库、集中式数据库、分布式数据库、云端数据库按使用场景分类内存数据库、时序数据库、搜索引擎数据库、嵌入式数据库、向量数据库。
2025-11-19 16:32:03
694
原创 数据结构与算法day15~day16
“三傻排序”是算法学习路上的重要里程碑,它们教会我们什么是“坏”的算法,从而让我们更好地去追求和设计“好”的算法。在实际编程中,请务必使用语言标准库提供的高效排序函数(它们通常是 O(n log n) 的)。
2025-11-18 16:16:46
1488
原创 正则表达式 day14
1)是什么正则表达式(Regular Expression,简称 regex 或 regexp)是一种强大的文本处理工具,用于匹配、查找、替换符合某种模式的字符串。它本质上是一个特殊的字符序列,定义了字符串的搜索模式。2)为什么正则表达式本质上是一种专门用于文本匹配的领域特定语言(DSL),它将复杂的字符串处理算法封装成简洁的语法,让程序员能够用声明式的方式描述"要什么",而不是命令式地描述"怎么做"。这正是它不可替代的价值所在。
2025-11-18 11:50:45
686
原创 AI大模型试学day01~day02
大模型首先是一个数据驱动的、参数规模巨大的、基于概率的、难以解释的复杂数学模型。而数学模型是用数学语言(如公式、方程、图表、函数、集合、逻辑等)对现实世界中的一个系统、现象或问题进行的抽象和简化描述。例如:爱因斯坦的质能方程(公式)、牛顿第二定律(方程)…大模型这个数据模型是静态的,它需要通过软件来实现、运行和使用,可以把大模型理解为一种及其复杂的“数据文件”或者“知识库”,而围绕它的整个系统才是一个完整的软件应用,也就是人们广义理解的“大模型”
2025-11-03 20:09:46
786
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅